
sensors

Article

Multi-View Fusion-Based 3D Object Detection for
Robot Indoor Scene Perception

Li Wang 1,†, Ruifeng Li 1,*, Jingwen Sun 1,†, Xingxing Liu 2, Lijun Zhao 1,* , Hock Soon Seah 3,
Chee Kwang Quah 4 and Budianto Tandianus 3

1 State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China;
15b908017@hit.edu.cn (L.W.); 18S008061@stu.hit.edu.cn (J.S.)

2 School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China;
lx2014@mail.ustc.edu.cn

3 School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798,
Singapore; ashsseah@ntu.edu.sg (H.S.S.); btandianus@ntu.edu.sg (B.T.)

4 ST Electronics (Training & Simulation Systems) Pte Ltd., Singapore 567714, Singapore;
quah.cheekwang@stee.stengg.com

* Correspondence: lrf100@hit.edu.cn (R.L.); zhaolj@hit.edu.cn (L.Z.);
Tel.: +86-0451-86402128 (R.L.); +86-0451-86418283 (L.Z.)

† These authors contributed equally to this work.

Received: 23 July 2019; Accepted: 17 September 2019; Published: 21 September 2019
����������
�������

Abstract: To autonomously move and operate objects in cluttered indoor environments, a service robot
requires the ability of 3D scene perception. Though 3D object detection can provide an object-level
environmental description to fill this gap, a robot always encounters incomplete object observation,
recurring detections of the same object, error in detection, or intersection between objects when
conducting detection continuously in a cluttered room. To solve these problems, we propose
a two-stage 3D object detection algorithm which is to fuse multiple views of 3D object point clouds in
the first stage and to eliminate unreasonable and intersection detections in the second stage. For each
view, the robot performs a 2D object semantic segmentation and obtains 3D object point clouds.
Then, an unsupervised segmentation method called Locally Convex Connected Patches (LCCP) is
utilized to segment the object accurately from the background. Subsequently, the Manhattan Frame
estimation is implemented to calculate the main orientation of the object and subsequently, the 3D
object bounding box can be obtained. To deal with the detected objects in multiple views, we construct
an object database and propose an object fusion criterion to maintain it automatically. Thus, the same
object observed in multi-view is fused together and a more accurate bounding box can be calculated.
Finally, we propose an object filtering approach based on prior knowledge to remove incorrect and
intersecting objects in the object dataset. Experiments are carried out on both SceneNN dataset and
a real indoor environment to verify the stability and accuracy of 3D semantic segmentation and
bounding box detection of the object with multi-view fusion.

Keywords: 3D object detection; multi-view fusion; semantic segmentation; Manhattan frame

1. Introduction

In an indoor environment, objects are regarded as the main contents and they provide crucial
clues for scene understanding and environmental perception. Object detection helps the indoor service
robot possess higher semantic awareness of its operating environment. As the robot operates in a 3D
environment, 3D object detection in a cluttered indoor scene is an essential module for the perception
and operation of a service robot, and even for better natural human-robot interaction.

Sensors 2019, 19, 4092; doi:10.3390/s19194092 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-9108-8276
https://orcid.org/0000-0002-0526-3497
http://www.mdpi.com/1424-8220/19/19/4092?type=check_update&version=1
http://dx.doi.org/10.3390/s19194092
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 4092 2 of 20

Object detection is one of the fundamental problems in the field of computer vision. It classifies
each object in an image and labels the object position using a 2D rectangular bounding box. With the
advancement of deep learning technology, image-based object detection algorithms, such as Faster
R-CNN [1], SSD [2], YOLO [3,4], and Mask R-CNN [5], have achieved extremely high accuracy.
However, these methods rely on training datasets. Mask R-CNN is one of the best performing
algorithms in 2D semantic segmentation, but it still shows poor performance in some real indoor
environments such as inaccurate semantic masks or error labels. The robustness and accuracy of
these methods are still not enough for a robot to operate in 3D space. In addition, it is also difficult to
detect an object’s actual position in a 3D environment and to obtain the object’s occupied volume from
an object detected in a 2D image. Therefore, it is not robust enough to be used by a robot to perform
tasks such as obstacle avoidance navigation or essential object grabbing. To resolve this problem, 3D
object detection emerges as a candidate to realize object classification and detection with the position
and volume information.

With the invention of depth cameras such as the Kinect sensor, the object’s image and depth
information can be easily retrieved. 3D object detection based on the RGB-D information becomes
mainstream research. There are some open-source datasets such as NYU V2 [6] and SUN RGB-D [7]
which provide a large number of color and depth images with object labels and 3D bounding boxes.
In order to compute 3D object bounding boxes, the latest 3D object detection algorithms leverage neural
networks to train on datasets, such as DSS [8], PointNet [9,10], and Frustum PointNet [11]. At present,
the network structure of the 3D detection algorithm based on the convolutional neural network is still
quite complex. Such an algorithm requires a quite high-performance equipment to perform training
and forward inference; moreover, it is too time-consuming to deploy it in a robot. In addition, the
accuracy of 3D object detection depends on the object amount and categories in a training dataset.
Furthermore, most methods utilize a single RGB-D training image of the same object in the NYU V2
and SUN RGB-D datasets. Therefore, the object depth information from only one viewpoint is used,
which lead to inaccurate information due to noise and missing information due to occlusion. Hence,
3D object detection using a point cloud faces great challenges because of the fragmented information.
Figure 1 is an example from SUN RGB-D dataset which shows a lot of points missing in the object
point cloud. In this paper, we explore the multi-view fusion method to resolve the incomplete point
cloud information of objects.

Sensors 2019, 19, x FOR PEER REVIEW 2 of 20

Object detection is one of the fundamental problems in the field of computer vision. It classifies
each object in an image and labels the object position using a 2D rectangular bounding box. With the
advancement of deep learning technology, image-based object detection algorithms, such as Faster
R-CNN [1], SSD [2], YOLO [3,4], and Mask R-CNN [5], have achieved extremely high accuracy.
However, these methods rely on training datasets. Mask R-CNN is one of the best performing
algorithms in 2D semantic segmentation, but it still shows poor performance in some real indoor
environments such as inaccurate semantic masks or error labels. The robustness and accuracy of these
methods are still not enough for a robot to operate in 3D space. In addition, it is also difficult to detect
an object’s actual position in a 3D environment and to obtain the object’s occupied volume from an
object detected in a 2D image. Therefore, it is not robust enough to be used by a robot to perform
tasks such as obstacle avoidance navigation or essential object grabbing. To resolve this problem, 3D
object detection emerges as a candidate to realize object classification and detection with the position
and volume information.

With the invention of depth cameras such as the Kinect sensor, the object’s image and depth
information can be easily retrieved. 3D object detection based on the RGB-D information becomes
mainstream research. There are some open-source datasets such as NYU V2 [6] and SUN RGB-D [7]
which provide a large number of color and depth images with object labels and 3D bounding boxes.
In order to compute 3D object bounding boxes, the latest 3D object detection algorithms leverage
neural networks to train on datasets, such as DSS [8], PointNet [9,10], and Frustum PointNet [11]. At
present, the network structure of the 3D detection algorithm based on the convolutional neural
network is still quite complex. Such an algorithm requires a quite high-performance equipment to
perform training and forward inference; moreover, it is too time-consuming to deploy it in a robot.
In addition, the accuracy of 3D object detection depends on the object amount and categories in a
training dataset. Furthermore, most methods utilize a single RGB-D training image of the same object
in the NYU V2 and SUN RGB-D datasets. Therefore, the object depth information from only one
viewpoint is used, which lead to inaccurate information due to noise and missing information due to
occlusion. Hence, 3D object detection using a point cloud faces great challenges because of the
fragmented information. Figure 1 is an example from SUN RGB-D dataset which shows a lot of points
missing in the object point cloud. In this paper, we explore the multi-view fusion method to resolve
the incomplete point cloud information of objects.

Figure 1. Object point cloud extraction of an image from the SUN RGB-D dataset. Object detection is
conducted by YOLO V3 and an object point cloud is extracted by utilizing RGB and depth images.
There are many points missing in the object point cloud.

Though these datasets provide many RGB and depth images to train, the situation is different
when an actual robot operates in a room. As the robot can move freely in an indoor room, the same
object may be detected many times in different keyframes. Therefore, we have to deal with the
multiple detections of the same object to ensure the uniqueness of the object. Moreover, sometimes
the same object observed in multiple viewpoints may be detected with different labels due to

Figure 1. Object point cloud extraction of an image from the SUN RGB-D dataset. Object detection
is conducted by YOLO V3 and an object point cloud is extracted by utilizing RGB and depth images.
There are many points missing in the object point cloud.

Though these datasets provide many RGB and depth images to train, the situation is different
when an actual robot operates in a room. As the robot can move freely in an indoor room, the same
object may be detected many times in different keyframes. Therefore, we have to deal with the
multiple detections of the same object to ensure the uniqueness of the object. Moreover, sometimes the

Sensors 2019, 19, 4092 3 of 20

same object observed in multiple viewpoints may be detected with different labels due to inaccurate
detection. For example, a chair is detected as a sofa. Another case is that a part of the object may be
detected as other label and this leads to an intersection between objects in the same space. Sometimes
objects are detected to be very small or large compared to the actual object size. Thus, there are still
many problems for a robot to perform 3D object detection in an actual environment.

To resolve these problems, we propose a 3D object detection framework which fuses multiple
views and maintains an object database automatically. We leverage the multi-view fusion method to
achieve the more complete observation of objects when the robot moves. Then, this will benefit the
accurate 3D size estimation of objects. Since the object detection algorithm based on the 2D image has
a high recognition precision in some situations, this algorithm can be utilized to detect the object in
a 2D image before the object point cloud is segmented. Through the movement of an indoor service
robot, images of the same object from different viewpoints can be conveniently obtained, and its pose in
each keyframe is estimated using a visual SLAM (Simultaneous Localization and Mapping) algorithm.
Therefore, multiple point clouds of the same object can be fused together as the input data of 3D
object recognition and it can solve the problem caused by the single object’s incomplete point cloud.
The main contributions of this paper are as follows:

(1) We propose a two-stage 3D object detection framework by fusing multiple views of a 3D point
cloud based on a real-time visual SLAM for an indoor service robot. Keyframes are continuously
processed and 3D bounding boxes of objects are estimated during the motion of a robot.

(2) We construct an object database and propose an object fusion criterion to maintain it automatically.
We also propose an object filtering approach based on prior knowledge including size and volume
ratio to remove atypical (based on object dimension) and intersecting objects in the object dataset.

The rest of the paper is organized as follows: Section 2 discusses related work on 3D object
detection. Section 3 describes the details of 3D object detection utilizing multi-view. Experiments are
conducted in Section 4. Conclusions and some suggestions for future work are given in Section 5.

2. Related Work

With the use of increasing number of service robots in indoor environments, there is a great
deal of work to study the perception of the environment where the robot is operating. For example,
the well-known SLAM problem is real-time pose estimation and mapping. In this field, there are
a large number of achievements, such as laser-based methods, gmapping [12], Cartographer [13] and
vision-based methods, ORB-SLAM2 [14], ElasticFusion [15] and so on, but these are more concerned
with the geometric properties of the environment which are applied to the robot to perform tasks
such as motion planning and navigation. However, the interaction in a higher level between the robot
and the environment (such as semantic interaction and grabbing objects) requires the ability to sense
objects in the environment including identifying objects’ categories and obtaining the occupied space
of the objects.

Numerous works [16–18], have studied semantic segmentation based on RGB and depth images,
but the purpose of these works is only to better understand the images in 2D. They do not identify
3D bounding boxes around the detected objects. Lin et al. [19] were the first to propose a method to
generate 3D bounding boxes by utilizing the Constrained Parametric Min-Cuts (CPMC) algorithm
with 2D appearance features, object-object, and object-scene context relationships are incorporated into
a Conditional Random Field (CRF) model for semantic label inference.

Many 3D object detection works have been inspired by the successful application of convolutional
neural networks in the field of 2D object detection. Song et al. [8] presented a 3D ConvNet approach
which applied ConvNets for 3D object detection. The network includes two main modules which
are named Region Proposal Network (RPN) and Object Recognition Network (ORN), respectively.
The object proposal method is very similar to the method of 2D object detection. As the two networks

Sensors 2019, 19, 4092 4 of 20

do not share layers, the number of parameters is very large. Therefore, the ConvNet method is very
time-consuming, requiring about 20 seconds per image.

Deng et al. [20] designed a convolutional neural network that directly leveraged 2.5D (RGB and
depth image) images as network inputs to regress the object’s 3D bounding box. The object category
detected from an RGB image and the object volume from a depth image are used as the initial values
of the network. However, it also has the problem of a large amount of network structure parameters
and high operational requirements.

Ren and Sudderth [21] proposed a cloud of oriented gradients descriptor for classifying 3D
bounding boxes. Contextual features are fused in this method. Although it achieves high accuracy
on the SUN-RGBD dataset, it needs a long time to compute features. Lahoud et al. [22] presented
a 3D object detection method for orientating, placing, and scoring bounding boxes around objects by
utilizing 2D information in order to quickly reduce 3D search space. 2D object detection is employed
to detect objects and their locations and sizes are learned by a Multilayer Perceptron (MLP). In the
final step, they refine the detections based on the relations of object categories in a scene. Nevertheless,
object point cloud from 2D object detection inadvertently includes some background points which
could result in an inaccurate estimation of orientation.

In most of these methods, only a single RGB or RGB-D image is utilized to estimate the 3D
bounding boxes of objects. However, this cannot obtain a complete object point cloud information from
a single perspective. This seriously affects the object detection. In this paper, we solve this problem
by fusing multiple keyframes which are obtained in a real-time visual SLAM. Moreover, unlike the
previous method [8] that assumes all objects in the scene shared the same orientation, we estimate
the orientation for each object. Compared with Lahoud et al.’s approach [22], we remove the wrong
background points from the detected object point cloud by utilizing an unsupervised point cloud
segmentation algorithm which can obtain a more accurate orientation estimation.

Multi-view methods have been developed in other areas such as semantic segmentation. Antonello
et al. [23] proposed a multi-view frame fusion method to improve the semantic segmentation
and to create accurate semantic maps. Tateno et al. [24] studied object recognition on 3D data
which was reconstructed by multi-view frames in order to improve the robustness. They propose
a framework to carry out incremental segmentation of a 3D scene. Nakajima et al. [25] put forward
an object-oriented semantic mapping approach based on InfiniTAM [26] which was a visual SLAM
method using continuous RGB-D frames. This method also utilizes the 3D dense map to conduct
semantic segmentation. Grinvald et al. [27] also focused on object-centric map construction and
conducted the object fusion from multiple segmented point clouds. However, 3D object bounding
box and object pose, which are very important for robot operation and environmental perception, are
not estimated in these methods. In this paper, we fill this gap by providing multiple properties of 3D
objects. Moreover, the error detection cases and the intersection of object bounding boxes are rarely
involved in other studies. We will study these in the situations in which a robot may encounter an
actual environment.

The 3D object detection for a service robot requires object point cloud integrity, unique labeling,
and accurate 3D bounding box. In this paper, we propose a framework to perform 3D object detection
continuously, to construct an object database, and to maintain it automatically.

3. 3D Object Detection Algorithm Based on Multi-View Fusion

A service robot usually employs an RGB-D camera as the main visual sensor in order to perceive
an environment. We utilize the RGB and depth images to perform 3D object detection in the environment
in order to obtain the object category and 3D bounding box. This section introduces the proposed
algorithm of 3D object detection based on multiple views fusion (schematic diagram is shown in
Figure 2). It includes five modules:

1. Object point clouds extraction based on Mask R-CNN;
2. Unsupervised segmentation of the object point cloud;

Sensors 2019, 19, 4092 5 of 20

3. 3D object bounding box estimation based on Manhattan Frame;
4. Object point cloud fusion utilizing multi-view and object database maintenance;
5. Object database refinement to remove error detection and object intersections.Sensors 2019, 19, x FOR PEER REVIEW 5 of 20

RGB
 Image 1

Depth
 Image 1

Pose 1

2D Object Detection
based on Mask R-CNN

RGB
 Image n

Depth
Image n

Pose n

Keyframes

Object Point Cloud Fusion

3D Bounding Box
Estimation

…
…

Object Point
Cloud 1

Object Point
Cloud n

Object
Segmentation

based on LCCP

Manhattan Frame
Estimation

Object
Database

Object fusion judgement
New object or fused object?

N

Y

3D object Bonunding Box Detection

3D Object Point Cloud Extraction

Add or
update
objects

Fuse with object in the
database

Object Database
Refinement

Object Database
Maintenance

Figure 2. Schematic diagram of the 3D object detection algorithm based on multiple keyframes fusion
observation.

3.1. Object Point Cloud Extraction Based on Mask R-CNN

This module detects and extracts object point clouds in each input image. We utilize a visual
SLAM method to generate keyframes and detect objects based on a deep learning method. Finally,
object point clouds are extracted and transformed into the world coordinate system using the pose of
each keyframe. As a service robot moves, continuous pose estimation is always conducted in order
to obtain its pose in the world coordinate system. In this paper, the visual SLAM algorithm named
ORB-SLAM2 [14] is employed as it can achieve high accuracy and robustness when using an RGB-D
camera in an indoor environment. ORB feature points are extracted and matched among input
frames, and the frame pose is calculated. To balance the performance and efficiency, the frame with
enough inliers and low overlap from other frames are selected and named as a keyframe. The rigid
3D pose of keyframe n is a 4 × 4 transformation matrix [,] SE(3)n n nT R t which consists of a
rotation matrix SO(3)nR and a 3D translation vector 3

nt R .
Inspired by the effectiveness of object instance segmentation in 2D images based on deep

learning, we employ Mask R-CNN to detect objects, which is an end-to-end method to extend the
Faster R-CNN method by adding a branch to predict instance segmentation masks. It can perform
quite well in the test dataset (at 5fps in a GPU Pascal Titan X, the instance segmentation accuracy of
35.7% mAP using ResNet-101-FPN as the backbone in the Microsoft COCO dataset). To improve the
processing efficiency, object detection is only conducted on each keyframe. For the n-th keyframe
()n R , we can obtain several detected objects ([1,])n

k k m (m is the number of objects) which
includes some properties such as class ID {0,1, ,80}n

kC , probability [0,1]n
k , bounding box n

kB

, and object instance mask n
kM which is a binary image with the same resolution as the RGB image.

We set a threshold of the object probability, then only the object that satisfied n
k is

selected to extract point cloud. We can extract object point cloud ([1,])C n
kP k m in the scope of

detected object instance mask n
kM using the RGB and depth images (m is the number of objects

meeting the threshold condition, and the left superscript C means the current coordinate system {OC}
of the keyframe). For the convenience to describe objects, object point cloud C n

kP should be
transformed into the world coordinate system {OW}. We leverage the n-th keyframe’s pose
transformation matrix nT to convert, and then obtain the object point cloud n

kP in the world
coordinate system (for convenience, if we do not declare the coordinate system, it is in the world one):

n C n
k n kP T P (1)

Figure 2. Schematic diagram of the 3D object detection algorithm based on multiple keyframes
fusion observation.

3.1. Object Point Cloud Extraction Based on Mask R-CNN

This module detects and extracts object point clouds in each input image. We utilize a visual
SLAM method to generate keyframes and detect objects based on a deep learning method. Finally,
object point clouds are extracted and transformed into the world coordinate system using the pose of
each keyframe. As a service robot moves, continuous pose estimation is always conducted in order
to obtain its pose in the world coordinate system. In this paper, the visual SLAM algorithm named
ORB-SLAM2 [14] is employed as it can achieve high accuracy and robustness when using an RGB-D
camera in an indoor environment. ORB feature points are extracted and matched among input frames,
and the frame pose is calculated. To balance the performance and efficiency, the frame with enough
inliers and low overlap from other frames are selected and named as a keyframe. The rigid 3D pose of
keyframe n is a 4 × 4 transformation matrix Tn = [Rn, tn] ∈ SE(3) which consists of a rotation matrix
Rn ∈ SO(3) and a 3D translation vector tn ∈ R3.

Inspired by the effectiveness of object instance segmentation in 2D images based on deep learning,
we employ Mask R-CNN to detect objects, which is an end-to-end method to extend the Faster R-CNN
method by adding a branch to predict instance segmentation masks. It can perform quite well in the
test dataset (at 5fps in a GPU Pascal Titan X, the instance segmentation accuracy of 35.7% mAP using
ResNet-101-FPN as the backbone in the Microsoft COCO dataset). To improve the processing efficiency,
object detection is only conducted on each keyframe. For the n-th keyframe (n ∈ R), we can obtain
several detected objects ϕn

k (k ∈ [1, m]) (m is the number of objects) which includes some properties
such as class ID Cn

k ∈ {0, 1, · · · , 80}, probability ψn
k ∈ [0, 1], bounding box Bn

k , and object instance mask
Mn

k which is a binary image with the same resolution as the RGB image.
We set a threshold λ of the object probability, then only the object that satisfied ψn

k ≥ λ is selected
to extract point cloud. We can extract object point cloud CPn

k (k ∈ [1, m′]) in the scope of detected object
instance mask Mn

k using the RGB and depth images (m′ is the number of objects meeting the threshold
condition, and the left superscript C means the current coordinate system {OC} of the keyframe).
For the convenience to describe objects, object point cloud CPn

k should be transformed into the world
coordinate system {OW}. We leverage the n-th keyframe’s pose transformation matrix Tn to convert,

Sensors 2019, 19, 4092 6 of 20

and then obtain the object point cloud Pn
k in the world coordinate system (for convenience, if we do not

declare the coordinate system, it is in the world one):

Pn
k = Tn

CPn
k (1)

3.2. Unsupervised Segmentation of the Object Point Cloud

Object point cloud detection using 2D image usually contains background point cloud (in addition
to the object point cloud) which greatly affects the estimation accuracy of the 3D object bounding box.
Therefore, we need to extract the object point cloud from the background point cloud.

In order to segment the object, the geometric unsupervised learning method called Locally Convex
Connected Patches (LCCP) is leveraged. Before segmentation, the point cloud is processed by a voxel
filter, a pass-through filter, and a statistical filter to remove noise points. Then, the super-voxel
segmentation is conducted that the point cloud is subdivided into many small blocks according to
spatial position and point cloud surface normal vector. The adjacency graph is later computed to
connect nearby super voxels. Finally, super voxel clustering is performed by utilizing convexity and
concaveness between small blocks. The angle between the centerline vector of adjacent super voxel
block and the normal vector is calculated to confirm the convex-concave relationship. After marking
the convex-concave relationship of each block, the region growth algorithm that the region is only
allowed to grow across the convex side is adopted to cluster smaller super blocks into larger objects.
Since the point cloud density decreases with the distance increases, it is difficult to determine the
octree size. Thus, logarithmic transformation is applied in the z-axis orientation in order to improve
the accuracy.

After the above operation, the point cloud is segmented into s regions. A region in which the
object belongs to needs to be extracted. Since the object is usually at the center of the bounding box and
occupies most of the area in the box, the segmented point cloud segPn

k of an object Pn
k can be selected

according to the maximum number of points among all segmented point clouds:

segPn
k = argmax

segPn
kv

(〈segPn
kv〉)(v ∈ [1, s]) (2)

where 〈segPn
kt〉means the number of points in the v-th segmented point cloud segPn

kv.
In Nakajima and Saito’s method [25], the object segmentation is always done in the whole image

point cloud. However, we only conduct the segmentation in the object point cloud in order to reduce
the calculation.

3.3. 3D Object Bounding Box Estimation Based on Manhattan Frame

After the object segPn
k is segmented from the point cloud, its 3D bounding box will be estimated.

Since the object point cloud coordinates are in the world coordinate system {OW}, a 3D bounding
box can be obtained by directly calculating the maximum and minimum values of the object point
cloud in three axial orientations. However, when the object is in different positions, it might obtain 3D
bounding boxes with different sizes, which cannot effectively determine the spatial volume occupied
by the object.

Generally, objects in a man-made environment often contain orthogonal or parallel planes, and
the Manhattan world assumes that each plane is perpendicular to an axis in a coordinate system
(Manhattan World Assumption). Such a coordinate system is called Manhattan Frame (MF), which
characterizes the main direction of object distribution. Therefore, MF can be utilized to solve the object
orientation before calculating the 3D bounding box.

The rotation matrix R of Manhattan Frame is calculated by utilizing the algorithm proposed

in [28]. We calculate the surface normal N =
{
→
n i

}N

i=1
(N ∈ R) of an object point cloud and regard the

Sensors 2019, 19, 4092 7 of 20

normal as the input to estimate MF. Then, we consider an MF estimation problem as a consensus set
maximization that maximizes the number of inliers over the rotation search space:

argmax
R∈SO(3)

N∑
i=1

6∑
j=1

[[
∠
(
→
n i, R

→
e j

)
≤ δ

]]
(3)

where ∠
(
→
n i, R

→
e j

)
is the vector angle between

→
n i and R

→
e j,

{
→
e j

}6

j=1
are the basis vectors and their

opposite vectors
→
e 1= [1, 0, 0]T,

→
e 2= [0, 1, 0]T,

→
e 3= [0, 0 , 1]T,

→
e 4= −

→
e 1,
→
e 5= −

→
e 2,
→
e 6= −

→
e 3, δ is the

threshold value for judging inlier points, and [[·]] is an indicator function.
As the orientations of 3D bounding boxes of most objects in an indoor environment are along the

normal direction of the floor, we modify the estimated MF to satisfy this restriction. Then, the rotation
matrix R of MF is converted to R′. After solving the MF coordinate system {OMF}, the center of object
point cloud pc = (xc, yc, zc) is calculated in the coordinate system {OW}. The coordinate system {OMF}
will be translated to the object’s center, then {OMF} =

{
R′, pc

}
, and the transformation matrix of the

coordinate system from {OMF} to {OW} is expressed as MF
W T . According to Equation (4), the object point

cloud segPn
k in the system {OW} is converted to {OMF}, expressed as MF

seg Pn
k :

MF
seg Pn

k = MF
W T−1

· segPn
k (4)

At this time, the maximum and minimum values of the object point cloud segPn
k in three axial

orientations are calculated in the coordinate system {OMF}, thereby we obtain the 3D bounding box
3DBn

k of the object.

3.4. Object Point Cloud Fusion Utilizing Multi-View and Object Database Maintenance

The robot leverages a visual SLAM algorithm to generate multiple keyframes when moving.
The same object may be observed in multiple views, therefore, fusing point clouds of the same object
in multiple views can result in a more complete object.

A schematic diagram showing an observation of the same object from different viewpoints is
shown in Figure 3. We regard each keyframe from the visual SLAM as a new view. The world
coordinate is labeled as {OW}, and the n-th keyframe coordinate system is labeled as {On} in the visual
SLAM. We follow the same method described in Section 3.1 to convert the object point cloud CPn

k in the
n-th keyframe to the world coordinate system {OW}, and then we can obtain Pn

k .

Sensors 2019, 19, x FOR PEER REVIEW 7 of 20

where ,i jn Re
 is the vector angle between in

 and jRe

 , 6
1{ }j je

 are the basis vectors and their

opposite vectors 1 =[1,0,0]Te
 , 2 =[0,1,0]Te

 , 3 =[0,0 1]Te

， , 4 1=e e

, 5 2=e e

, 6 3=e e

, is the threshold
value for judging inlier points, and is an indicator function.

As the orientations of 3D bounding boxes of most objects in an indoor environment are along
the normal direction of the floor, we modify the estimated MF to satisfy this restriction. Then, the
rotation matrix R of MF is converted to R . After solving the MF coordinate system {OMF}, the center
of object point cloud (, ,)c c c cp x y z is calculated in the coordinate system {OW}. The coordinate
system {OMF} will be translated to the object’s center, then { } { , }MF cO R p , and the transformation
matrix of the coordinate system from {OMF} to {OW} is expressed as MF

WT . According to Equation (4),
the object point cloud n

seg kP in the system {OW} is converted to {OMF}, expressed as MF n
seg kP :

1MF n MF n
seg k W seg kP T P (4)

At this time, the maximum and minimum values of the object point cloud n
seg kP in three axial

orientations are calculated in the coordinate system {OMF}, thereby we obtain the 3D bounding box
3D n

kB of the object.

3.4. Object Point Cloud Fusion Utilizing Multi-View and Object Database Maintenance

The robot leverages a visual SLAM algorithm to generate multiple keyframes when moving. The
same object may be observed in multiple views, therefore, fusing point clouds of the same object in
multiple views can result in a more complete object.

A schematic diagram showing an observation of the same object from different viewpoints is
shown in Figure 3. We regard each keyframe from the visual SLAM as a new view. The world
coordinate is labeled as {OW}, and the n-th keyframe coordinate system is labeled as {On} in the visual
SLAM. We follow the same method described in Section 3.1 to convert the object point cloud C n

kP in
the n-th keyframe to the world coordinate system {OW}, and then we can obtain n

kP .

Robot trajectory

Figure 3. Schematic diagram of the observed object from different views.

In each keyframe, several objects can be detected and there may exist multiple objects in the
same category. Therefore, it will be a problem to fuse object point clouds among different keyframes.
To this end, we design an object database to maintain objects from multiple keyframes. The object
database is in the world coordinate system {OW}, and it includes some properties: object class ID,
probability, object ID, object point cloud, segmented object point cloud, 3D bounding box. In order
to manage the object database automatically, we design some rules for object addition and update.

Figure 3. Schematic diagram of the observed object from different views.

Sensors 2019, 19, 4092 8 of 20

In each keyframe, several objects can be detected and there may exist multiple objects in the same
category. Therefore, it will be a problem to fuse object point clouds among different keyframes. To this
end, we design an object database to maintain objects from multiple keyframes. The object database
is in the world coordinate system {OW}, and it includes some properties: object class ID, probability,
object ID, object point cloud, segmented object point cloud, 3D bounding box. In order to manage the
object database automatically, we design some rules for object addition and update.

3.4.1. The First Time to Insert Objects to the Object Database

Initially, the object database is empty. We detect objects from the first keyframe (n = 1) and obtain
several detected objects ϕn

k (k ∈ [1, m]) (m is the number of objects). All objects in this keyframe will be
added to the database only when they satisfy the constraint:{

m ≥ 1
ψn

k ≥ λ(n ∈ N+, k ∈ [1, m])
(5)

If objects ϕ1
k in the first keyframe fail to meet Equation (5), we conduct the same operation in the

next keyframe until that it appears the keyframe to meet the condition. We do these because objects
with the same category should not fuse together in this keyframe and the object point cloud fusion will
be conducted after this keyframe.

Then, we calculate the properties of objects according to Sections 3.1–3.3 and add them to the
database Q. The properties of the α−th object Qα include object class ID Cα, probability ψα, object ID α,
object point cloud Pα, segmented object point cloud segPα, 3D bounding box 3DBα (α ∈ [1, ξ], ξ ∈ N+, ξ
is the number of objects in the database Q).

3.4.2. Object Fusion Criterion and Database Maintenance

After the first time we insert objects to the database Q, the detected objects in the subsequent
keyframes are conducted the object fusion criterion to determine whether to add to the database
directly or to fuse with existing objects.

For each detected object ϕn+1
k satisfying Equation (5) in the (n + 1)-th keyframe, we search the

database Q based on object class ID Cn+1
k . We can obtain all objects with the same Cn+1

k in the database
and the number of objects is η(η ≤ ξ, η ∈ N). If the value η is zero, it means the object is a new one and
can be inserted to Q directly. The object ID α is updated by α← α+ 1 . Otherwise, all objects with the
same Cn+1

k are selected to determine which one to fuse. We judge whether it is the same object based
on the centroid distance between two 3D object bounding boxes. For the i-th object (i ≤ η, i ∈ N+),
the distance di can be calculated. For each object class, we can set the distance threshold based on the
object’s prior size. Finally, we decide to fuse or to insert the object by using Equation (6): min(di) ≤ ΓCn+1

k
, f use

min(di) > ΓCn+1
k

, insert
(6)

where ΓCn+1
k

is the threshold of the object with the class ID Cn+1
k .

In order to improve the fusion effectiveness, we utilize the original object point cloud Pn+1
j instead

of the segmented one segPn+1
j to fuse (j is the object ID in the database corresponding to min(di)).

And the j-th object point cloud is replaced by a fused point cloud:

Pn+1
j ← Pn+1

k + Pn+1
j (7)

Subsequently, the fused object point cloud undergoes point cloud filter, segmentation, and 3D
bounding box estimation. As an object is observed at different views, the probability of the object may

Sensors 2019, 19, 4092 9 of 20

not be the same. We consider that the mean probability value is more comprehensive to the observed
object. Then, the probability ψ j is updated by:

ψ j ← mean(ψn+1
k ,ψ j) (8)

Finally, the corresponding object in the database is updated by the new object properties, while
the object ID is still the old one. After the fusion operation, we can obtain a more completed object
to estimate the 3D bounding box. In this way, new keyframes are continuously processed and 3D
bounding boxes of objects are estimated during the motion of a robot. Meanwhile, the object database
is maintained automatically.

3.5. Object Database Refinement

After the above processing, we can obtain a database with many objects. However, due to the
inaccurate semantic segmentation of object instances, we may encounter errors such as incorrect object
sizes (too small or too big compared with the general object size) and the intersection of object bounding
boxes. To this end, we propose an object filtering approach based on prior knowledge including object
size and volume ratio to solve the incorrect and intersection detection problems in the object dataset.

3.5.1. Atypical Object Filtering Based on Prior Knowledge

For general objects in an indoor environment (such as the chair, table, sofa, and bed), their typical
sizes are known priorly and they are usually within a certain range or threshold. For example, if we
detect a chair’s bounding box with the size of 0.10 m × 0.15 m × 0.05 m, we can judge that this is
an error estimation and we delete it from the object database.

Therefore, in order to remove the detected atypical objects in the object dataset, the prior sizes of
objects are utilized as the criterion. We compare the object volume with the prior one and also contrast
the edges of the bounding box. This is because sometimes the object volume meets the constraint, but
one of the object edges is too short. For each object category C ∈ {0, 1, · · · , 80}, we define the prior size:
length LC, width WC, and height HC. In the object database, the i-th object ϕi has the bounding box Bi
with the size of length Li, width Wi, and height Hi. Then, we design the discriminant criteria as:

(Li ·Wi ·Hi ≥ ΓVmin · LC ·WC ·HC)∩

(Li ·Wi ·Hi ≤ ΓVmax · LC ·WC ·HC)∩

(min(Li, Wi, Hi) ≥ ΓEmin(LC, WC, HC))

(9)

where ΓVmin and ΓVmax are minimum and maximum volume limit thresholds of the object, respectively,
and ΓE is the threshold of the object edge.

If the object can satisfy the constraint in Equation (9), we consider the object size is true positive.
Otherwise, the object is atypical and it should be removed from the object database. Therefore, the
database can be updated automatically.

3.5.2. Intersection Object Filtering Based on Volume Ratio

During the movement of a robot, multiple keyframes are obtained by visual SLAM and then these
are conducted instance semantic segmentation by using Mask R-CNN. The same object can be detected
for many times and these detections are fused by using the method explained in Section 3.4. However,
if the object is detected with a different label, the fusion algorithm will fail. The ‘new’ object will be
added to the database again and its bounding box will have a large intersection with the bounding box
of the ‘previous’ one. Worse, some parts of a big object are detected with different labels, and these
smaller objects are included in the big object. Therefore, we have to deal with these error cases.

After the analysis of the spatial positional relationship between 3D object bounding boxes,
we observe that there are four situations: no intersection, tiny intersection, large intersection, and full

Sensors 2019, 19, 4092 10 of 20

intersection, as shown in Figure 4. In order to remove the intersecting object, we design an object
filtering algorithm based on the volume ratio to refine the object database. We utilize the volume ratio
between the intersection part with the volume of each object in order to decide intersection types.
As most objects in the normal indoor environment have Manhattan framework property, we can adjust
one axis of Manhattan framework in the 3D bounding box to be parallel to the ground normal vector.
We show illustrations of various intersection types between the object A volume VA and object B
volume VB in Figure 4.

Sensors 2019, 19, x FOR PEER REVIEW 10 of 20

normal vector. We show illustrations of various intersection types between the object A volume AV
and object B volume BV in Figure 4.

(a) (b) (c) (d)

Figure 4. Different situations of object intersection: (a) no intersection; (b) tiny intersection; (c) large
intersection; (d) fully intersection.

The volume ratios A and B between the intersection V and the volume of each
respective object AV and BV can be calculated by using Equation (10):

/

/
A A

B B

V V

V V

 (10)

We set a minimum volume ratio threshold V
 to decide the intersection type as shown in

Equation (11). In Figures 4a, b, the intersection part is small, so we do not delete the objects. In
Figures 4c,d, the most part of object B is in inside object A, so we remove object B in the dataset.
Therefore, for each object in the database, we compare it with all other objects in order to calculate
the volume ratio by using Equation (10). The filtering algorithm is presented in Algorithm 1
(including all cases of A BV V and A BV V):

(=0) (=0),(1)

() (), (2)

, (3)

1, (4)

A B

A V B V

B V

B

 (11)

Algorithm 1: Intersection object filtering algorithm
 : the number of objects in the database
D: the array of subscripts that need to be deleted in the database
1: 0 ;
2: for = 0; < ; ++ do
3: for = + 1; < ; ++ do
4: Calculate the intersectionV between object and ;
5: /V V ;
6: /V V ;
7: end for
8: 1argmax(, , , ,)

 ;

9: if () ()V

 then

10: D() ;
11: ++ ;
12: elseif () ()V

 then

13: D() ;
14: ++ ;

Figure 4. Different situations of object intersection: (a) no intersection; (b) tiny intersection; (c) large
intersection; (d) fully intersection.

The volume ratios ηA and ηB between the intersection V∩ and the volume of each respective object
VA and VB can be calculated by using Equation (10):{

ηA = V∩/VA
ηB = V∩/VB

(10)

We set a minimum volume ratio threshold ΓV∩ to decide the intersection type as shown in Equation
(11). In Figure 4a,b, the intersection part is small, so we do not delete the objects. In Figure 4c,d, the
most part of object B is in inside object A, so we remove object B in the dataset. Therefore, for each
object in the database, we compare it with all other objects in order to calculate the volume ratio by
using Equation (10). The filtering algorithm is presented in Algorithm 1 (including all cases of VA ≥ VB

and VA < VB):
(ηA = 0)∩ (ηB = 0), (1)

(ηA ≤ ΓV∩)∩ (ηB ≤ ΓV∩), (2)
ηB > ΓV∩ , (3)
ηB = 1, (4)

(11)

Sensors 2019, 19, 4092 11 of 20

Algorithm 1: Intersection object filtering algorithm

Ω: the number of objects in the database Q
D: the array of subscripts that need to be deleted in the database Q
1: ε = 0;
2: for σ = 0; σ < Ω; σ++ do
3: for τ = σ + 1; τ< Ω; τ++ do
4: Calculate the intersection V∩ between object ϕσ and ϕτ;
5: ησ = V∩/Vσ;
6: ητ = V∩/Vτ;
7: end for
8: ξ = argmax

τ
(ησ+1, · · · , ητ, · · · , ηΩ);

9: if (ησ > ηξ)∩ (ησ > ΓV∩) then
10: D(ε) = σ;
11: ε++;
12: elseif (ησ ≤ ηξ)∩ (ηξ > ΓV∩) then
13: D(ε) = ξ;
14: ε++;
15: end if
16: end for
17: ε = 0;
18: for σ = 0; σ < Ω; σ++ do
19: if D(ε) = σ then
20: Delete the object ϕσ in the database Q;
21: end if
22: end for

4. Experimental Evaluation

In order to verify the effectiveness of the proposed multi-view based 3D object detection algorithm,
we need to perform experiments on an open-source dataset for quantitative evaluation. Although there
are some datasets providing ground truth objects with semantic segmentation and 3D bounding boxes
(such as the NYU depth dataset V2, SUN RGB-D), they cannot be used for evaluating our algorithm
because these datasets consist of discrete images. Based on this requirement, we select SceneNN [29,30]
dataset which provides raw RGB-D data for evaluating our algorithm performance. This dataset is
captured by Asus Xtion Pro and Kinect V2 sensors and it consists of more than 100 indoor scenes such
as offices, dormitory, classrooms, and so on. All scenes are reconstructed to 3D map representations
and have per-vertex and per-pixel annotation.

To compare our results with previous works [27,31], we ran experiments using those previous
works on 10 scenes from SceneNN dataset. In these works, only the object-level 3D semantic
segmentation accuracy is evaluated, excluding 3D bounding box accuracy. Therefore, we conduct the
object semantic segmentation using our multi-view fusion method in order to compare with these
methods. Afterward, the 3D object bounding boxes are given in our method. We provide the details of
our experimental results in order to prove the effectiveness of object fusion strategy and object database
refinement. Finally, the performance of the method is provided.

4.1. Object-Level 3D Semantic Segmentation Evaluation

Many works in 3D object semantic segmentation always take the whole reconstructed scene as the
input. These are quite different with our work because there is no fusion problem in multiple partial
detections of objects and these methods are not directly applicable for incremental object detection
during robot movement. Therefore, we do not compare with these methods in the paper. To the best of
our knowledge, the recent works by Pham et al. [31] and Grinvald et al. [27] are most related to our
work and we present quantitative results of 3D segmentation accuracy.

Sensors 2019, 19, 4092 12 of 20

In the work by Pham et al. [31], they report 3D object segmentation accuracy for 40 classes in the
NYU RGB-D V2 dataset which includes segmentation for non-object classes such as floor, ceiling, and
wall. The purpose of this work is to classify every single element in the 3D scene. However, we focus on
the object-level 3D detection in the environment for a robot. We adopt the Mask R-CNN which is trained
on the Microsoft COCO object dataset with 80 classes. There are nine object categories in common
with the NYU dataset. Compared with the work by Pham et al. [31], the work by Grinvald et al. [27] is
more similar to our work. Therefore, we follow the test configuration of Grinvald et al. [27] in order to
conduct the experiment on the same 10 sequences of SceneNN dataset. We also list the results of the
work by Pham et al. [31], which is evaluated in a bigger set of classes.

Our method is evaluated on 10 sequences from the SceneNN dataset. In order to decrease the
influence of pose estimation error, the poses provided in the dataset are utilized. Every 10 images of
the raw RGB and depth images are regarded as a keyframe input to our method. After object fusion
and dataset refinement, we can obtain the point cloud of each detected object. Then, we calculate the
object semantic segmentation accuracy by using 3D Intersection over Union (IoU) method. The object
ground truth is extracted from the reconstructed triangle meshes with annotation and it is converted to
a point cloud. We calculate the 3D IoU between the segmented object points and the one in the ground
truth. Finally, we compute the per-class Average Precision (AP) and mean AP on all 10 sequences,
as shown in Table 1. In order to illustrate the effectiveness of our method, we compare with the recent
previous works [27,31], as shown in Table 2. The results show that our method outperforms Pham
et al.’s method [31] on nine of the ten sequences and the Grinvald et al.’s method [31] on six of the
ten sequences, respectively, which can prove the object-level semantic segmentation accuracy of our
method. In Table 2, we also add a baseline only using single keyframe to verify the fusion strategy of
multiple keyframes. The object detection is conducted in each keyframe but the detected objects are
not fused together. The results show that the accuracy is very significant decline compared with the
fusion one. The cause of this problem is that the object point cloud is incomplete in one frame and this
verifies the influence of fusion strategy in our method.

Table 1. 3D object semantic segmentation experiments of our method on 10 sequences of SceneNN
dataset (units: %).

Categories
Sequence ID

011 016 030 061 078 086 096 206 223 255

Bed - 56.9 - - - - 65.9 - - -
Chair 63.1 0 67.4 - 77.7 54.4 59.4 41.4 51.3 -
Sofa - 72.1 62.9 72.5 - - - 65.1 - -
Table 61.2 - 59.4 0 42.6 0 5.2 77.2 41.8 -
Books - - 52.9 - 53.8 45.8 20.3 - - -

Refrigerator - - - - 0 - - - - 56.4
Television - - - - 72.2 73.6 45.1 - - -

Toilet - - - - - - - - - -
Bag - - - - - 55.0 0 0 - -

Average 62.2 43.0 60.7 36.3 49.3 45.8 32.7 46.0 46.6 56.4

Table 2. Comparative experiments on 10 sequences of SceneNN dataset (units: %).

Categories
Sequence ID

011 016 030 061 078 086 096 206 223 255

[31] 52.1 34.2 56.8 59.1 34.9 35.0 26.5 41.7 40.9 48.6
[27] 75.0 33.3 56.1 62.5 45.2 20.0 29.2 79.6 43.8 75.0

Single frame 45.8 26.4 48.2 19.7 35.1 30.7 18.3 33.9 27.2 34.8
Our method 62.2 43.0 60.7 36.3 49.3 45.8 32.7 46.0 46.6 56.4

In order to verify the influence of different modules in our method, we carry out the ablation
experiments on 10 sequences of SceneNN dataset, as shown in Table 3. Firstly, the point cloud filter
and LCCP modules are removed individually to verify the effect. We observe that the results are all
reduced and the LCCP module impacts greatly. Then, we remove both two modules. The results
become worse compared with previous results, which verifies the effectiveness of each module.

Sensors 2019, 19, 4092 13 of 20

Table 3. Ablation experiments on 10 sequences of SceneNN dataset (units: %).

Categories
Sequence ID

011 016 030 061 078 086 096 206 223 255

-Filter 60.5 41.4 57.4 34.8 47.5 44.3 30.1 43.5 43.8 54.2
-LCCP 55.2 40.8 55.1 33.4 46.2 42.4 28.5 43.2 41.5 52.8

-Filter-LCCP 54.6 40.2 52.9 31.1 44.7 41.6 26.4 40.2 40.7 48.7
Our method 62.2 43.0 60.7 36.3 49.3 45.8 32.7 46.0 46.6 56.4

Besides, we also provide several segmented point clouds of objects on these scenes as shown in
Figure 5. To compare the segmentation effectiveness, the corresponding ground truths of objects are
also given. It can be seen that the object can be segmented accurately.Sensors 2019, 19, x FOR PEER REVIEW 13 of 20

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5. Some 3D object semantic segmentation results compared with ground truth on the SceneNN
dataset (the first and third columns including (a,c,e,g,i,k) and are ground truth, the second and fourth
columns including (b,d,f,h,j,l) are extracted by our method).

4.2. 3D object Bounding Box Detection and Database Refinement

In addition to segmenting the object point cloud, we also carry out 3D bounding box detection.
We adopt an oriented bounding box which can enclose the object compactly. Manhattan frame
method is utilized to estimate the main orientations in three orthogonal axes. One axis of Manhattan
framework in each box has been adjusted to be parallel to the ground normal vector. Some
experiments on the SceneNN dataset are presented in Figure 6. Through the fusion of multi-view
observation and 3D bounding box estimation, objects are detected and added to the database. In order
to validate the robustness of our object fusion and database refinement algorithm, we present not
only point clouds and 3D bounding boxes in the database, but also detection results before and after
database refinement (shown in the middle and right column respectively in Figure 6). We observe
that there are a lot of objects with atypical sizes and huge intersection volume before database
refinement. Most of these atypical or intersecting objects are removed after the refinement, which can
prove the effectiveness of our method.

Figure 5. Some 3D object semantic segmentation results compared with ground truth on the SceneNN
dataset (the first and third columns including (a,c,e,g,i,k) and are ground truth, the second and fourth
columns including (b,d,f,h,j,l) are extracted by our method).

4.2. 3D object Bounding Box Detection and Database Refinement

In addition to segmenting the object point cloud, we also carry out 3D bounding box detection.
We adopt an oriented bounding box which can enclose the object compactly. Manhattan frame method is
utilized to estimate the main orientations in three orthogonal axes. One axis of Manhattan framework in
each box has been adjusted to be parallel to the ground normal vector. Some experiments on the SceneNN
dataset are presented in Figure 6. Through the fusion of multi-view observation and 3D bounding box
estimation, objects are detected and added to the database. In order to validate the robustness of our object
fusion and database refinement algorithm, we present not only point clouds and 3D bounding boxes in
the database, but also detection results before and after database refinement (shown in the middle and
right column respectively in Figure 6). We observe that there are a lot of objects with atypical sizes and

Sensors 2019, 19, 4092 14 of 20

huge intersection volume before database refinement. Most of these atypical or intersecting objects are
removed after the refinement, which can prove the effectiveness of our method.Sensors 2019, 19, x FOR PEER REVIEW 14 of 20

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 6. 3D object bounding box detection experiments on the SceneNN dataset (from top to down,
sequence number: 011, 016, 030, 078, 086; the first column (a,d,g,j,m) is the final detection with point
cloud map, the middle column (b,e,h,k,n) is the detection objects before database refinement, the final
column (c,f,i,l,o) is the detection objects after database refinement).

Figure 6. 3D object bounding box detection experiments on the SceneNN dataset (from top to down,
sequence number: 011, 016, 030, 078, 086; the first column (a,d,g,j,m) is the final detection with point
cloud map, the middle column (b,e,h,k,n) is the detection objects before database refinement, the final
column (c,f,i,l,o) is the detection objects after database refinement).

Sensors 2019, 19, 4092 15 of 20

Additionally, one example of object fusion progress is given to show the details, as shown in
Figure 7. Multiple views of the object “chair” from the 011 sequence of the SceneNN dataset are
detected and fused gradually. The shown progression includes RGB and depth images, detected mask
images, extracted object point clouds, fused object point clouds, segmented object point clouds with
3D bounding boxes, and objects in 3D map representation. The object point clouds from different
perspectives are extracted and fused together to form a more completed object. However, object point
cloud obtained by the Mask R-CNN detection always contains some background points (the third and
fifth rows in Figure 7), and this will have a serious impact on 3D bounding box estimation. We adopt
the geometric segmentation method based on LCCP in order to remove background points and then
estimate the box (the sixth row in Figure 7). The final results verify the effectiveness of our method.Sensors 2019, 19, x FOR PEER REVIEW 15 of 20

(a1) (b1) (c1) (d1) (e1)

(a2) (b2) (c2) (d2) (e2)

(a3) (b3) (c3) (d3) (e3)

(a4) (b4) (c4) (d4) (e4)

(a5) (b5) (c5) (d5) (e5)

(a6) (b6) (c6) (d6) (e6)

(a7) (b7) (c7) (d7) (e7)

Figure 7. One example of 3D object detection on the SceneNN dataset(sequence ID: 011, (a1–e1) are
the input RGB images as keyframes, (a2–e2) are depth images, (a3–e3) are the object instance
segmentation by Mask R-CNN, (a4–e4) are the extracted object point cloud, (a5–e5) are the fused
object point cloud using multi-keyframe, (a6–e6) are the segmented object point cloud based on LCCP
and 3D bounding box based on Manhattan frame estimation, and (a7–e7) are the final 3D object
detection in the point cloud map). The chair can be merged more completely and the 3D bounding
box is estimated more accurate after multi-keyframe fusion.

Additionally, one example of object fusion progress is given to show the details, as shown in
Figure 7. Multiple views of the object “chair” from the 011 sequence of the SceneNN dataset are
detected and fused gradually. The shown progression includes RGB and depth images, detected
mask images, extracted object point clouds, fused object point clouds, segmented object point clouds

Figure 7. Cont.

Sensors 2019, 19, 4092 16 of 20

Sensors 2019, 19, x FOR PEER REVIEW 15 of 20

(a1) (b1) (c1) (d1) (e1)

(a2) (b2) (c2) (d2) (e2)

(a3) (b3) (c3) (d3) (e3)

(a4) (b4) (c4) (d4) (e4)

(a5) (b5) (c5) (d5) (e5)

(a6) (b6) (c6) (d6) (e6)

(a7) (b7) (c7) (d7) (e7)

Figure 7. One example of 3D object detection on the SceneNN dataset(sequence ID: 011, (a1–e1) are
the input RGB images as keyframes, (a2–e2) are depth images, (a3–e3) are the object instance
segmentation by Mask R-CNN, (a4–e4) are the extracted object point cloud, (a5–e5) are the fused
object point cloud using multi-keyframe, (a6–e6) are the segmented object point cloud based on LCCP
and 3D bounding box based on Manhattan frame estimation, and (a7–e7) are the final 3D object
detection in the point cloud map). The chair can be merged more completely and the 3D bounding
box is estimated more accurate after multi-keyframe fusion.

Additionally, one example of object fusion progress is given to show the details, as shown in
Figure 7. Multiple views of the object “chair” from the 011 sequence of the SceneNN dataset are
detected and fused gradually. The shown progression includes RGB and depth images, detected
mask images, extracted object point clouds, fused object point clouds, segmented object point clouds

Figure 7. One example of 3D object detection on the SceneNN dataset(sequence ID: 011, (a1–e1) are the
input RGB images as keyframes, (a2–e2) are depth images, (a3–e3) are the object instance segmentation
by Mask R-CNN, (a4–e4) are the extracted object point cloud, (a5–e5) are the fused object point cloud
using multi-keyframe, (a6–e6) are the segmented object point cloud based on LCCP and 3D bounding
box based on Manhattan frame estimation, and (a7–e7) are the final 3D object detection in the point
cloud map). The chair can be merged more completely and the 3D bounding box is estimated more
accurate after multi-keyframe fusion.

Furthermore, we present the details of our method results when running the 10 sequences of
SceneNN dataset, shown in Table 4. For each sequence, the numbers of images, keyframes, detected
objects by Mask R-CNN, Manhattan frame estimation, object fusion, database objects before and after
refinement are counted. These data are shown in a column chart in Figure 8a and the numbers of
database objects before and after refinement are also given in Figure 8b. We can observe that a large
number of same objects are detected in multiple keyframes, and our method can work well to conduct
3D object detection continuously and maintain the object database automatically.

Table 4. Details of experiments on 10 sequences of SceneNN dataset.

Items
Sequence ID

011 016 030 061 078 086 096 206 223 255

Images 3700 1300 4100 3400 7000 5900 9500 10100 4500 5400
Keyframes 370 130 410 340 700 590 950 1010 450 540

Detected objects by Mask R-CNN 361 190 4740 881 4621 1637 2267 3111 1172 1540
Object probability beyond threshold 190 140 2788 523 2407 1278 1174 1937 632 846

Manhattan frame estimation 321 260 2832 773 2239 1808 1497 3404 982 1172
Object fusion 151 124 1255 361 976 832 650 1603 446 495

Object database before refinement 21 14 204 30 185 120 147 190 80 171
Object database after refinement 8 3 75 6 53 32 35 36 15 32

Sensors 2019, 19, x FOR PEER REVIEW 16 of 20

with 3D bounding boxes, and objects in 3D map representation. The object point clouds from different
perspectives are extracted and fused together to form a more completed object. However, object point
cloud obtained by the Mask R-CNN detection always contains some background points (the third
and fifth rows in Figure 7), and this will have a serious impact on 3D bounding box estimation. We
adopt the geometric segmentation method based on LCCP in order to remove background points
and then estimate the box (the sixth row in Figure 7). The final results verify the effectiveness of our
method.

Furthermore, we present the details of our method results when running the 10 sequences of
SceneNN dataset, shown in Table 4. For each sequence, the numbers of images, keyframes, detected
objects by Mask R-CNN, Manhattan frame estimation, object fusion, database objects before and after
refinement are counted. These data are shown in a column chart in Figure 8a and the numbers of
database objects before and after refinement are also given in Figure 8b. We can observe that a large
number of same objects are detected in multiple keyframes, and our method can work well to conduct
3D object detection continuously and maintain the object database automatically.

Table 4. Details of experiments on 10 sequences of SceneNN dataset.

Sequence ID
Items

011 016 030 061 078 086 096 206 223 255

Images 3700 1300 4100 3400 7000 5900 9500 10100 4500 5400
Keyframes 370 130 410 340 700 590 950 1010 450 540

Detected objects by Mask R-CNN 361 190 4740 881 4621 1637 2267 3111 1172 1540
Object probability beyond

threshold
190 140 2788 523 2407 1278 1174 1937 632 846

Manhattan frame estimation 321 260 2832 773 2239 1808 1497 3404 982 1172
Object fusion 151 124 1255 361 976 832 650 1603 446 495

Object database before refinement 21 14 204 30 185 120 147 190 80 171
Object database after refinement 8 3 75 6 53 32 35 36 15 32

(a)

Figure 8. Cont.
Figure 8. Cont.

Sensors 2019, 19, 4092 17 of 20
Sensors 2019, 19, x FOR PEER REVIEW 17 of 20

(b)

Figure 8. Comparison of the number of database objects before and after refinement processing on
the SceneNN dataset: (a) 3D object detection column chart; and (b) object database column chart.

After the experiments on the SceneNN dataset, we observe that our method can achieve good
results for most situations. However, we also discover some failure cases. Several examples are
shown in Figure 9. For Figure 9a1,a2,b1 these cases are caused by error category detection of Mask
R-CNN. We can improve the performance by fine-tuning Mask R-CNN using indoor environmental
images in the future. For Figure 9b2, this case is error fusion of bounding boxes as two sofas are next
to each other.

(1)

(2)

(1)

(2)

(a) (b)

Figure 9. Some failure cases of 3D object detection on the SceneNN datasets. (a) sequence 011, (1) the
door is recognized as a television and (2) the dustbin is recognized as a toilet; (b) sequence 061, (1) the
table is recognized as a sofa and the two sofas are recognized as a big sofa.

In addition to the experiments on the SceneNN dataset, we also carried out an experiment in the
real indoor environment using a service robot, as shown in Figure 10. The Kinect V1 RGB-D sensor
installed in the robot was used to produce RGB and depth images and the ORB-SLAM method is
utilized to generate the keyframes and poses. Then, our method was used to detect 3D objects. Finally,
11 objects including four chairs, five televisions and two keyboards are detected, as shown in Figure
10c.

Figure 8. Comparison of the number of database objects before and after refinement processing on the
SceneNN dataset: (a) 3D object detection column chart; and (b) object database column chart.

After the experiments on the SceneNN dataset, we observe that our method can achieve good
results for most situations. However, we also discover some failure cases. Several examples are shown
in Figure 9. For Figure 9a1,a2,b1 these cases are caused by error category detection of Mask R-CNN. We
can improve the performance by fine-tuning Mask R-CNN using indoor environmental images in the
future. For Figure 9b2, this case is error fusion of bounding boxes as two sofas are next to each other.

Sensors 2019, 19, x FOR PEER REVIEW 17 of 20

(b)

Figure 8. Comparison of the number of database objects before and after refinement processing on
the SceneNN dataset: (a) 3D object detection column chart; and (b) object database column chart.

After the experiments on the SceneNN dataset, we observe that our method can achieve good
results for most situations. However, we also discover some failure cases. Several examples are
shown in Figure 9. For Figure 9a1,a2,b1 these cases are caused by error category detection of Mask
R-CNN. We can improve the performance by fine-tuning Mask R-CNN using indoor environmental
images in the future. For Figure 9b2, this case is error fusion of bounding boxes as two sofas are next
to each other.

(1)

(2)

(1)

(2)

(a) (b)

Figure 9. Some failure cases of 3D object detection on the SceneNN datasets. (a) sequence 011, (1) the
door is recognized as a television and (2) the dustbin is recognized as a toilet; (b) sequence 061, (1) the
table is recognized as a sofa and the two sofas are recognized as a big sofa.

In addition to the experiments on the SceneNN dataset, we also carried out an experiment in the
real indoor environment using a service robot, as shown in Figure 10. The Kinect V1 RGB-D sensor
installed in the robot was used to produce RGB and depth images and the ORB-SLAM method is
utilized to generate the keyframes and poses. Then, our method was used to detect 3D objects. Finally,
11 objects including four chairs, five televisions and two keyboards are detected, as shown in Figure
10c.

Figure 9. Some failure cases of 3D object detection on the SceneNN datasets. (a) sequence 011, (1) the
door is recognized as a television and (2) the dustbin is recognized as a toilet; (b) sequence 061, (1) the
table is recognized as a sofa and the two sofas are recognized as a big sofa.

In addition to the experiments on the SceneNN dataset, we also carried out an experiment in
the real indoor environment using a service robot, as shown in Figure 10. The Kinect V1 RGB-D
sensor installed in the robot was used to produce RGB and depth images and the ORB-SLAM method
is utilized to generate the keyframes and poses. Then, our method was used to detect 3D objects.
Finally, 11 objects including four chairs, five televisions and two keyboards are detected, as shown in
Figure 10c.

Sensors 2019, 19, 4092 18 of 20

Sensors 2019, 19, x FOR PEER REVIEW 18 of 20

(a) (b)

(c)

Figure 10. The real environmental experiment using a robot: (a) the robot with a Kinect V1 sensor;
(b) the image of real indoor environment; and (c) the 3D object detection results with point cloud.

4.3. Runtime Evaluation

The proposed method for the 3D object semantic segmentation and detection of a robot is
evaluated on a laptop equipped with an Intel i9 CPU operating at 3.30 GHz and an Nvidia Titan RTX
GPU. The GPU is used for 2D object detection based on Mask R-CNN. All the experiments are carried
out using the RGB-D images with a resolution of 640 × 480 pixels as the input and the point cloud
resolution is set to 0.01 m. The average runtime (over 10 sequences of the SceneNN dataset) of the
main components of our method is given in Table 5.

Table 5. Runtime evaluation of our method.

Components Time (ms)
Mask R-CNN 192.3

Object extraction and filter 160.9
LCCP 51.5
MFE 43.4
Other 66.4
Total 514.5

Although our method operates at a not very high frequency, it can provide a continuous
detection for an indoor robot to obtain object-level environmental perception ability which benefits
the robot in a real application.

5. Conclusions

This paper proposes a two-stage 3D object detection algorithm to conduct object-level indoor
scene perception for robots. The object point clouds from multiple views are fused and 3D bounding
boxes are calculated. We construct an object database and propose an object fusion criterion to
maintain it automatically. An object filtering approach based on prior sizes and volume ratio is
proposed to remove atypical and intersection detections in the object dataset. Experiments carried
out on the SceneNN dataset and real environments verify the effectiveness and accuracy of the

Figure 10. The real environmental experiment using a robot: (a) the robot with a Kinect V1 sensor;
(b) the image of real indoor environment; and (c) the 3D object detection results with point cloud.

4.3. Runtime Evaluation

The proposed method for the 3D object semantic segmentation and detection of a robot is evaluated
on a laptop equipped with an Intel i9 CPU operating at 3.30 GHz and an Nvidia Titan RTX GPU. The
GPU is used for 2D object detection based on Mask R-CNN. All the experiments are carried out using
the RGB-D images with a resolution of 640 × 480 pixels as the input and the point cloud resolution is
set to 0.01 m. The average runtime (over 10 sequences of the SceneNN dataset) of the main components
of our method is given in Table 5.

Table 5. Runtime evaluation of our method.

Components Time (ms)

Mask R-CNN 192.3
Object extraction and filter 160.9

LCCP 51.5
MFE 43.4
Other 66.4
Total 514.5

Although our method operates at a not very high frequency, it can provide a continuous detection
for an indoor robot to obtain object-level environmental perception ability which benefits the robot in
a real application.

5. Conclusions

This paper proposes a two-stage 3D object detection algorithm to conduct object-level indoor
scene perception for robots. The object point clouds from multiple views are fused and 3D bounding
boxes are calculated. We construct an object database and propose an object fusion criterion to maintain

Sensors 2019, 19, 4092 19 of 20

it automatically. An object filtering approach based on prior sizes and volume ratio is proposed to
remove atypical and intersection detections in the object dataset. Experiments carried out on the
SceneNN dataset and real environments verify the effectiveness and accuracy of the proposed method.
In the future work, the object-level map can be used for the operation of a service robot, and benefit for
the better natural human-robot interaction.

Author Contributions: Conceptualization, L.W., R.L., J.S. and L.Z.; methodology, L.W., J.S., X.L. and H.S.S.;
software, L.W., J.S. and X.L.; validation, J.S., L.Z. and C.K.Q.; writing—original draft preparation, L.W. and J.S.;
writing—review and editing, B.T., H.S.S. and C.K.Q.

Funding: This work was supported by the National Key Research and Development Program “Intelligent Robot”
Key Special Project (2018YFB1307100); National Natural Science Foundation of China (61673136); Self-Planned
Task of State Key Laboratory of Robotics and System (HIT) (No. SKLRS201906B, No. SKLRS201715A); the
Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No.51521003);
the ST Engineering- NTU Corporate Lab through the NRF corporate lab@ university scheme, and the China
Scholarship Council (201706120137).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal
networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

2. Liu, W.; Anguelo, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.; Berg, A. SSD: Single Shot MultiBox Detector.
In Proceedings of the European Conference on Computer Vision (ECCV 2016), Amsterdam, The Netherlands,
8–16 October 2016; pp. 21–37.

3. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection.
In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016),
Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

4. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR 2017), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525.

5. He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 99,
1–13.

6. Silberman, N.; Hoiem, D.; Kohli, P.; Fergus, R. Indoor segmentation and support inference from RGBD
images. In Proceedings of the 12th European Conference on Computer Vision (ECCV 2012), Florence, Italy,
7–13 October 2012; pp. 1–14.

7. Song, S.; Lichtenberg, S.P.; Xiao, J. SUN RGB-D: A RGB-D scene understanding benchmark suite.
In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015),
Boston, MA, USA, 7–12 June 2015; pp. 567–576.

8. Song, S.; Xiao, J. Deep sliding shapes for amodal 3D object detection in RGB-D images. In Proceedings of
the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), Las Vegas, NV, USA,
27–30 June 2016; pp. 808–816.

9. Qi, C.; Su, H.; Mo, K.; Guibas, L. PointNet: Deep learning on point sets for 3D classification and segmentation.
In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017),
Honolulu, HI, USA, 21–26 July 2017; pp. 77–85.

10. Qi, C.; Yi, L.; Su, H.; Guibas, L. PointNet++: Deep hierarchical feature learning on point sets in a metric
space. In Proceedings of the Advances in Neural Information Processing Systems (NIPS 2017), Long Beach,
CA, USA, 4–9 December 2017; pp. 5100–5109.

11. Qi, C.R.; Liu, W.; Wu, C.; Su, H.; Guibas, L.J. Frustum PointNets for 3D object detection from RGB-D Data.
In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2018),
Salt Lake City, UT, USA, 18–22 June 2018; pp. 918–927.

12. Grisetti, G.; Stachniss, C.; Burgard, W. Improved techniques for grid mapping with Rao-Blackwellized
particle filters. IEEE Trans. Rob. 2007, 23, 34–46. [CrossRef]

13. Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-time loop closure in 2D LIDAR SLAM. In Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA 2016), Stockholm, Sweden,
16–21 May 2016; pp. 1271–1278.

http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1109/TRO.2006.889486

Sensors 2019, 19, 4092 20 of 20

14. Mur-Artal, R.; Tardos, J. ORB-SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D
cameras. IEEE Trans. Rob. 2017, 33, 1–8. [CrossRef]

15. Whelan, T.; Salas-Moreno, R.; Glocker, B.; Davison, A. ElasticFusion. Int. J. Robot. Res. 2016, 35, 1697–1716.
[CrossRef]

16. Gupta, S.; Arbeláez, P.; Malik, J. Perceptual organization and recognition of indoor scenes from RGB-D
images. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR
2013), Portland, OR, USA, 18–22 June 2013; pp. 564–571.

17. Gupta, S.; Girshick, R.; Arbeláez, P.; Malik, J. Learning rich features from RGB-D images for object detection
and segmentation. In Proceedings of the 12th European Conference on Computer Vision (ECCV 2014),
Zurich, Switzerland, 6–12 September 2014; pp. 345–360.

18. Ren, X.; Bo, L.; Fox, D. RGB-(D) scene labeling: Features and algorithms. In Proceedings of the 2012 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR 2012), Providence, RI, USA, 16–21 June
2012; pp. 2759–2766.

19. Lin, D.; Fidler, S.; Urtasun, R. Holistic scene understanding for 3D object detection with RGBD cameras.
In Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV 2013), Sydney, NSW,
Australia, 3–6 December 2013; pp. 1417–1424.

20. Zhuo, D.; Latecki, L.J. Amodal detection of 3D objects: Inferring 3D bounding boxes from 2D ones in
RGB-Depth images. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR 2017), Honolulu, HI, USA, 21–26 July 2017; pp. 398–406.

21. Ren, Z.; Sudderth, E.B. Three-dimensional object detection and layout prediction using clouds of oriented
gradients. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR
2016), Las Vegas, NV, USA, 27–30 June 2016; pp. 1525–1533.

22. Lahoud, J.; Ghanem, B. 2D-driven 3D object detection in RGB-D images. In Proceedings of the 2017 IEEE
International Conference on Computer Vision (ICCV 2017), Venice, Italy, 22–29 October 2017; pp. 4632–4640.

23. Antonello, M.; Wolf, D.; Prankl, J.; Ghidoni, S.; Menegatti, E.; Vincze, M. Multi-view 3D entangled forest for
semantic segmentation and mapping. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA 2018), Brisbane, QLD, Australia, 21–25 May 2018; pp. 1855–1862.

24. Tateno, K.; Tombari, F.; Navab, N. When 2.5D is not enough: Simultaneous reconstruction, segmentation
and recognition on dense SLAM. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA 2016), Stockholm, Sweden, 16–21 May 2016; pp. 2295–2302.

25. Nakajima, Y.; Saito, H. Efficient Object-Oriented Semantic Mapping with Object Detector. IEEE Access. 2019,
7, 3206–3213. [CrossRef]

26. Prisacariu, V.; Kähler, O.; Golodetz, S.; Sapienza, M.; Cavallari, T.; Torr, P.; Murray, D. InfiniTAM v3:
A Framework for Large-Scale 3D Reconstruction with Loop Closure. arXiv 2017, arXiv:1708.00783.

27. Grinvald, M.; Furrer, F.; Novkovic, T.; Chung, J.; Cadena, C.; Siegwart, R.; Nieto, J. Volumetric instance-aware
semantic mapping and 3D object discovery. IEEE Robot. Automat. Lett. 2019, 4, 3037–3044. [CrossRef]

28. Joo, K.; Oh, T.; Kim, I. Globally optimal Manhattan frame estimation in real-time. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), Las Vegas, NV, USA, 27–30
June 2016; pp. 1763–1771.

29. Hua, B.; Pham, Q.; Nguyen, D.; Tran, M.; Yu, L. SceneNN: A Scene Meshes Dataset with aNNotations.
In Proceedings of the 2016 4th International Conference on 3D Vision (3DV 2016), Stanford, CA, USA, 25–28
October 2016; pp. 92–101.

30. Nguyen, D.; Hua, B.; Yu, L.; Yeung, S. A robust 3D-2D interactive tool for scene segmentation and annotation.
IEEE T. Vis. Comput. Gr. 2018, 24, 3005–3018. [CrossRef]

31. Pham, Q.; Hua, B.; Nguyen, D.; Yeung, S. Real-time progressive 3D semantic segmentation for indoor scene.
In Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV 2019), Hilton
Waikoloa Village, HI, USA, 7–11 January 2019; pp. 1089–1098.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TRO.2017.2705103
http://dx.doi.org/10.1177/0278364916669237
http://dx.doi.org/10.1109/ACCESS.2018.2887022
http://dx.doi.org/10.1109/LRA.2019.2923960
http://dx.doi.org/10.1109/TVCG.2017.2772238
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	3D Object Detection Algorithm Based on Multi-View Fusion
	Object Point Cloud Extraction Based on Mask R-CNN
	Unsupervised Segmentation of the Object Point Cloud
	3D Object Bounding Box Estimation Based on Manhattan Frame
	Object Point Cloud Fusion Utilizing Multi-View and Object Database Maintenance
	The First Time to Insert Objects to the Object Database
	Object Fusion Criterion and Database Maintenance

	Object Database Refinement
	Atypical Object Filtering Based on Prior Knowledge
	Intersection Object Filtering Based on Volume Ratio

	Experimental Evaluation
	Object-Level 3D Semantic Segmentation Evaluation
	3D object Bounding Box Detection and Database Refinement
	Runtime Evaluation

	Conclusions
	References

