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Abstract—Fluorescence imaging has been widely utilized 

in various clinical applications. As a functional imaging 

modality, NIR fluorescence imaging often does not offer 

sufficient structural details. Therefore, structural imaging 

such as color reflectance overlaid with fluorescence imaging 

represents a superior approach for surgical visualization. 

Image registration of color reflectance and NIR fluorescence 

is needed for accurate overlay. In this study, we have 

implemented a deep convolutional algorithm for feature-

based fluorescence-to-color image registration. Software-

hardware codesign was conducted. Several sets of 

experiments were performed on biological tissues to 

compare the performance of our algorithm and traditional 

methods. We have demonstrated the feasibility of deep 

convolutional feature-based fluorescence-to-color image 

registration. To our best knowledge, this is the first 

demonstration of deep learning-based image registration 

between fluorescence and color imageries. 

Keywords—Deep learning, image registration, 

fluorescence imaging, computer vision, intraoperative 

imaging, multimodal imaging 

I. INTRODUCTION 

Fluorescence imaging has been widely utilized in 

various clinical applications. For example, surgeons use 

fluorescence imaging to guide tumor resection and 

sentinel lymph node mapping [1-2]. Indocyanine green 

(ICG) is the most popular fluorophore used for 

fluorescence imaging owing to its low toxicity and high 

quantum yield. As a functional imaging modality, NIR 

fluorescence imaging often does not offer sufficient 

structural details. Structural imaging such as color 

reflectance overlaid with fluorescence imaging represents 

a superior approach for surgical visualization [3]. 

Image registration of color reflectance and NIR 

fluorescence is needed for accurate overlay. Conventional 

fluorescence imaging systems use a beam splitter 

calibrated for precise geometrical alignment of different 

image sensors, as a hardware-based approach [1-3]. 

However, beam splitters are large, heavy, and expensive 

optical components, making them inappropriate for 

application in compact imaging systems. Software-based 

image registration methods are promising alternatives. 

Feature-based image registration finds features such 

as edges, corners, lines, curves, regions, templates, and 

patches from images to establish point-by-point 

correspondences and derives transformation for image 

registration [4]. Traditional feature-based image 

registration algorithms utilize Scale-Invariant Feature 

Transform (SIFT) [5], Speeded Up Robust Features 

(SURF) [6], Binary Robust Invariant Scalable Keypoints 

(BRISK) [7], and Oriented FAST and Rotated BRIEF 

(ORB) [8]. More specifically, keypoints with location, 

scale, and orientation information are extracted and 

described by a feature descriptor for discriminative 

feature matching between the reference and target images. 

Deep learning is a powerful tool for computer vision 

and image processing tasks, such as object detection, 

segmentation, and registration. Many of deep learning-

based image registration algorithms train a network to 

learn the transformation of the target image to the 

reference image. For example, in [9], DeTone et al. 

proposed a Regression HomographyNet that learns the 

homography and the CNN model parameters 

simultaneously in an end-to-end fashion. However, the 

groundtruth homography between target images and 

reference images in the training set needs to be available, 

which is not the case for the task of registering 

fluorescence images to color images. Therefore, 

application of deep networks for feature extraction is a 

more practical idea. Yang et al. proposed a non-rigid 

registration method that uses intermediate layers of a pre-

trained VGG network to generate a feature descriptor that 

keeps both convolutional information and localization 

capabilities for remote sensing [10]. Though it 

outperforms SIFT in the registration of multi-temporal 

remote sensing images, its performance is not satisfactory 

for our fluorescence image registration task. We have 
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optimized this algorithm to improve the performance in 

fluorescence-to-color image registration. We have made 

two main improvements to the algorithm: 1) feature maps 

with higher resolution were used to represent feature 

points, which improved the accuracy of keypoint 

correspondence; 2) a filtering strategy was deployed to 

remove subpar keypoint matches. 

Fluorescence imagery usually does not share similar 

image features with color imagery. To improve the 

common features between these two modalities for an 

accurate feature-based registration, we previously 

developed an approach that implemented additional 

reflectance information to the fluorescence image [11]. In 

the current study, we have further developed the hardware 

to enable the separation of added reflectance component 

from the true fluorescence component. This can facilitate 

feature-based image registration and preserve a high 

signal-to-background ratio of fluorescence imaging. 

II. METHODS 

A. Hardware Setting 

Fig. 1 illustrates the system setup. Two board-level 

640 � 480 CMOS image sensors are used as image 

detectors. One sensor is used for color reflectance 

imaging, and the other is filtered by a bandpass filter (832 

± 37 nm) (Edmund Optics, NJ, USA) for NIR 

fluorescence imaging. A white LED (Edmund Optics, NJ, 

USA) and a NIR LED (Edmund Optics, NJ, USA) are 

mounted on a breadboard, which can be placed on a tripod. 

The system can capture NIR fluorescence and color 

reflectance images concurrently.  

We characterized the field of view (FOV) of the 

sensors and the excitation light power distribution of the 

NIR light source. We measured the horizontal and vertical 

edges of image frames captured by the sensor A at three 

different working distances, including 200 mm, 300 mm, 

and 400 mm to depict the FOV of the sensor. Sensors A 

and B are the same, so their FOVs should be the same. In 

addition, we studied fluorescence excitation light 

distribution at working distances of 200 mm, 300 mm, 

and 400 mm with a USB power meter (PM16-120, 

Thorlabs, Newton, NJ, USA). The excitation power was 

measured along a pair of horizontal and vertical lines 

parallel to the imaging frame, in which the cross point was 

identified at the peak value of the NIR illumination. 

B. Deep Convolutional Feature-Based Remote Sensing 

Image Registration 

In [10], Yang et al. proposed a deep convolutional 

feature-based image registration algorithm to align 

remote sensing images. They first detected two sets of 

keypoints X and Y from the reference image IX and the 

target image IY, respectively. Subsequently, they used an 

expectation maximization (EM)-based procedure to 

obtain the transformed locations of Y (referred to as Z). Y 

and Z are used to solve a thin plate spline (TPS) 

interpolation for image transformation. 

For each keypoint detected from the input image, the 

authors constructed a deep convolutional feature 

descriptor based on the output of certain layers of a 

pretrained VGG-16 network [12]. VGG is a family of 

deep convolutional networks trained on ImageNet with 

more than 1.2 million images, which are classified into 

1000 categories. It is relatively deep and trained on a large 

dataset, thus achieves excellent performance on feature 

extraction. VGG is frequently used for feature extraction 

in various computer vision tasks. Fig. 2 shows the 

architecture of a slightly modified VGG-16 network. The 

original output of VGG should be a 1000 � 1 vector 

indicating categories the objects contained in the input 

image are classified. Since only the output of several 

intermediate layers is used for constructing the descriptor, 

layers after the last pooling layer ‘pool5_1’ are ignored.  

The input of the VGG-16 network is a concatenated 

image of the reference image IX and the target image IY. 

More specifically, IX and IY are first resized to 

224�224�3 RGB images, which are then concatenated 

into a 2�224�224�3 vector and passed into the network. 

The biggest advantage of this is that the output feature 

 
Fig. 1. Custom dual-modal imaging system. 

 
Fig. 2. Modified VGG-16 network architecture. h and w 

represent the height and width of the input image [10]. 
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maps of IX and IY can be obtained simultaneously. Output 

of layers ‘pool3’, ‘pool4’, and ‘pool5_1’ are chosen to 

construct the descriptor; their corresponding sizes are 

28�28�256, 14�14�512, and 7�7�512, respectively. 

��  denotes the output feature map of layer ‘pool3’. 

Expanded feature map ��  and ��  can be obtained by 

Equation (1) and Equation (2), respectively. Where 

Kronecker product is denoted by ‘⨂’, I denotes a matrix 

of subscripted shape and filled with 1, and ��		
�  and 

��		
�_� denote the output feature maps of layers ‘pool4’ 

and ‘pool5_1’, respectively. 

�� �  ��		
�⨂������            (1) 

�� �  ��		
�_�⨂������           (2) 

��, ��, and �� are normalized into unit variance by 

Equation (3). Where ��∙�  computes the standard 

deviation of elements in a matrix. The ‘pool3’, ‘pool4’, 

and ‘pool5_1’ descriptors of point x are denoted by �����, 

�����, and �����, respectively. 

 ��  ←
��

�����
   (3) 

Given two points x and y, feature distance d(x, y) is 

defined as 

���, �� �  √2����, �� � ����, �� + ����, ��   (4) 

Where ����, ��  denotes the Euclidean distance of 

����� and �����. The weight √2 is applied to ����, �� 

since �� is 256-d, whereas �� and �� are 512-d. 

For feature points x and y, if the following conditions 

are satisfied: 

1) d(x, y) is the smallest of all d(∙, y). 

2) There does not exist a d(z, y) such that d(z, y) < 

� ∙d(x, y). �  is the matching threshold, greater 

than 1. 

then x is matched to y. But this may lead to one-to-many 

mapping. This matching process is called prematching. 

With a low threshold � , a larger number of feature 

points are selected in the prematching stage. After that, a 

large starting threshold �!  is set to choose highly 

corresponding feature points only. An EM algorithm is 

used to get initial Z (the transformed locations of Y) based 

on these highly corresponding feature points. Then, 

threshold � is subtracted by a step-length " in every k 

iterations, allowing a few more feature points to affect the 

transformation and update Z iteratively. Such practice 

enables strongly matched feature points to determine the 

overall transformation while other feature points optimize 

registration accuracy. 

In every iteration, M feature points from IX and N 

feature points from IY are chosen. An # � $ probability 

matrix %& can be built, which is then taken by a Gaussian 

mixture model (GMM)-based transformation solver. 

%&'(, )* denotes the putative probability of �')* and 

�'(* , in which �')*  is corresponding to �'(* . The 

large probability would further lead to a conspicuous 

transformation over �'(* by which the corresponding 

pair can be aligned. 

C. Our Algorithmic Improvements 

Although in [10], the original algorithm showed good 

performance on registering remote sensing images 

compared with SIFT-based methods, it does not work well 

on fluorescence-to-color image registration. We proposed 

two algorithmic improvements to address this challenge. 

Our first improvement is filtering out subpar feature 

point matches based on the slope and length of the line 

connecting two corresponding feature points. Specifically, 

given two sets of feature points X of IX and Y of IY, we add 

a horizontal position shift on each feature point in Y to 

obtain shifted feature points +,. The correspondences of 

feature points are transferred to X and +,. Then, the length 

and slope of each line connecting a feature point in X and 

its corresponding feature point in +,  are calculated. 

Based on the assumption that slopes and lengths of the 

lines with high correspondence fall into a small range, we 

can filter out the feature point matches with low 

correspondence. More specifically, we calculate the 

histogram of these slopes and distances and set the range 

at their maximum values, as a filtering band to get good 

feature point matches. Fig. 3 shows the histogram and how 

to filter out subpar matches. 

Our second improvement is using high-resolution 

multiscale feature maps. The multiscale feature maps are 

based on four output feature maps of four layers in the 

VGG-16 network. Observing the extracted feature point 

matches, we found that the locations of these 

corresponding feature points were not very accurate due to 

low resolution, impeding accurate image registration. 

Then, we used layers ‘pool2’, ‘pool3’, ‘pool4’ and 

‘pool5_1’ to construct a high-resolution feature descriptor. 

� ′, ��		
�, ��		
�, and ��		
�_� denote output maps of 

layers ‘pool2’, ‘pool3’, ‘pool4’ and ‘pool5_1’, 

 
Fig. 3. The histogram of slopes and distances. Only feature 

point matches falling into the red double-headed arrow will 

be chosen for further registration. 
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respectively. ��′ , ��′ , and ��′  are defined by the 

following equations. 

��′ �  ��		
�⨂������              (5) 

��′ �  ��		
�⨂������              (6) 

��′ �  ��		
�_�⨂�.�.��             (7) 

Subsequently, the output maps are normalized, as depicted 

in Equation (3). The ‘pool2’, ‘pool3’, ‘pool4’, and 

‘pool5_1’ descriptors of point x are denoted by � ′���, 

��′���, ��′���, and ��′���, respectively. The definition 

of d(x, y) in Equation (4) evolves into �′��, ��  in 

Equation (8)  

�,�/,0� �  2� ′��, ��  �  √2��′��, �� � ��′��, ��  

+ ��′��, ��                       (8) 

We used a 56�56 grid to represent the input image. 

Compared with the 28�28 grid in the original algorithm, 

the resolution was increased.  

D. Registration of Overlaid Image with Fluorescence 

We use the sensor B of our fluorescence-color dual-

modal imaging system, as illustrated in Fig. 1 to capture 

color reflectance images �1	
	2  and the sensor A to 

capture NIR reflectance images �3�2  and fluorescence 

images �4
  with the NIR light source turned off and on, 

respectively. We set �1	
	2  as the reference image and 

�3�2  as the target image. With the aforementioned method, 

we can obtain the transformation from �3�2  to �1	
	2 . 

�3�2  and �4
  are captured by the same sensor, thus the 

transformation can also be applied to align �4
  to �1	
	2 . 

In this way, we can achieve fluorescence-to-color image 

registration. Inspired by [13], instead of directly aligning 

�4
  to �1	
	2 , we first extract and combine denoised 

fluorescence signal with �3�2  to obtain reflectance-

fluorescence composite images �3�2_4
, then align �3�2_4
 

to �1	
	2  with the transformation. 

Given �4
  and �3�2 , we firstly subtract �3�2 from �4
  

to obtain the difference image �5�44. The pixels in �5�44 

with negative values are set as zero, which is based on the 

assumption that �4
  has higher luminance compared with 

�3�2 . By calculating the histogram of �5�44, we can use a 

threshold to filter out noise signals in �5�44  and get 

�5�44_563	�765 . By overlaying �5�44_563	�765 and �3�2 , we 

can get the composite image �3�2_4
.  

III. EXPERIMENTS 

We conducted deep convolutional feature-based 

fluorescence-to-color image registration of a fluorescence 

tube containing an ICG solution and ICG-labeled 

biological tissues, such as chicken wing and porcine rib. 

We first manually segmented the targets in both reference 

images �26  and target images �898  and got two binary 

mask images �26_:;7< and �898_:;7<, respectively. After 

determining the transformation from �898  to �26 with the 

algorithm, we applied the transformation to �898_:;7< to 

obtain �89_:;7<_269 . In addition, we calculated the 

intersection over union (IOU) between �26_:;7<  and 

�89_:;7<_269  as a quantitative evaluation of the 

registration performance of the algorithm. Equation (9) 

shows how to calculate the IOU between �26_:;7<  and 

�89_:;7<_269. We used the IOU to show the improvement 

of our implemented algorithm.  

��= �  
|�26_:;7<  ∩  �89_:;7<_269|

|�26_:;7<  ∪ �89_:;7<_269|
   (9) 

IV. RESULTS AND DISCUSSIONS 

The system characterization results of FOV and NIR 

excitation light distribution is shown in Fig. 4. As the 

working distance increases, the FOV increases linearly in 

both horizontal and vertical directions. NIR light power 

distributions at three working distances are close to 

gaussian distribution.  

The registration results are illustrated in Fig. 5. Row 

2 of Fig. 5 shows that filtering out incorrect feature point 

matches is necessary and helpful to increase the 

registration accuracy. Using feature descriptors with a 

higher resolution also improved the resolution of 

correspondences between the reference and target images 

and enhanced the registration results accordingly (Fig. 5: 

Row 3). When our both improvements were combined, 

accurate registration was achieved (Fig. 5: Row 4). The 

registration results of our implemented algorithm and 

 
Fig. 4. System characterization of (a) the horizontal and 

vertical FOV and (b) the NIR light power distribution at 

different working distances. 
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four traditional feature descriptor-based registration 

algorithms are shown in Fig. 6. The DL-56 algorithm 

outperformed SIFT and BRISK and achieved competitive 

registration performance compared to SURF and ORB. 

The increase in the resolution of feature descriptor helped 

boost the registration accuracy, especially for registering 

smaller objects with fine details, such as ICG tubes. These 

results have shown great potential to apply our deep-

learning-based registration algorithm in preclinical and 

clinical settings.  

 We have computed the IOU between the object 

binary mask of the reference image and the transformed 

mask of its corresponding target image to evaluate the 

performance of our deep learning-based registration 

algorithms. The implementation of filtering has improved 

registration performance, as demonstrated in Table I. The 

IOU value of the improved deep learning-based algorithm 

was greater than that obtained by the original algorithm 

in [10]. DL-56 filter gave the best performance, especially 

in surgical relevant settings where biological tissues are 

present (chicken and porcine tissues). The results have 

shown great promise for intraoperative applications.  

Limitation and Future Work: in this paper, we 

reported the algorithms and methods of a deep 

convolutional approach for fluorescence-to-color feature-

based image registration. The algorithm has been tested 

in biological tissues and benchtop settings. In the future, 

we plan to conduct more comprehensive quantitative 

testing of registration accuracy of deep learning-based 

algorithms against other methods and apply the system 

and method to animal/human studies. 

V. CONCLUSIONS 

We have demonstrated the feasibility of deep 

convolutional feature-based image registration for 

fluorescence-to-color image registration tasks. Software-

hardware codesign was conducted. To our best knowledge, 

this is the first demonstration of deep-learning-based 

image registration between fluorescence and color 

imageries.  

 
Fig. 5. Extracted feature point matches (column 1-2) & DL 

registration result (column 3). Row 1: original algorithm; 

row 2: improved algorithm with feature point filtering; row 

3: improved algorithm with feature descriptor of higher 

resolution; row 4: algorithm with both improvements. 

 
Fig. 6. Fluorescence-to-color image registration results. 

Fluorescence is pseudocolored in green. Column 1: chicken 

tissue with ICG fluorescence; column 2: centrifuge tube 

containing ICG solution; column 3: porcine rib containing 

ICG fluorescence. Row 1: direct overlay; row 2: SIFT-based 

method; row 3: BRISK-based method; row 4: ORB-based 

method; row 5: SURF-based method; row 6: deep 

convolutional feature-based method (28 � 28 feature 

descriptor) ; row 7: deep convolutional feature-based 

method (56�56 feature descriptor). 
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