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Abstract—Spine segmentation is a common task for 

spinal imaging and spinal surgical navigation. Spine 

segmentation provides valuable information for the 

diagnosis, and the segmentation output can also serve as an 

input for downstream surgical navigation. Unfortunately, 

spine segmentation is a labor-intensive task. In this study, 

we applied a deep network combining feature pyramid 

network (FPN) and UNet to the segmentation of vertebral 

bodies (VBs), referring as Res50_UNet. Compared with the 

original UNet, Res50_UNet has the following 

enhancements: 1) five consecutive spine MRI slices and two 

coordinate maps are concatenated as the input; 2) the 

convolutional block from ResNet are used; 3) an FPN 

architecture is applied to extracting rich multi-scale 

features and obtaining segmentation output. Experiments 

were conducted on an annotated T2-weighted MRIs of the 

lower spine dataset. We have benchmarked Res50_UNet 

against UNet and other UNet based network structures. It 

was found that Res50_UNet needs the lowest number of 

epochs (~1000 epochs) to achieve steady-state performance. 

The accuracy (AC) of Res50_UNet is higher than 99.5% 

with only 1000 epochs, which is very impressive. This study 

demonstrated the feasibility of applying Res50_UNet in 

spine segmentation. The network integrates the 

characteristics of FPN and UNet. These results have shown 

the potential for Res50_UNet in spine MRI segmentation, 

especially when a low number of epochs is desirable. 

Keywords—Spine segmentation, deep learning, medical 

image processing, computer vision 

 

I. INTRODUCTION 

Spine segmentation is a common task for spinal 

imaging and spinal surgical navigation. Historically, 

spine segmentation of medical images, such as nuclear 

magnetic resonance imaging (MRI) and x-ray computed 

tomography (CT), is performed manually. Spine 

segmentation provides valuable information for the 

diagnosis, and the segmentation output can also serve as 

an input for downstream surgical navigation. For 

example, [1] firstly utilizes a convolutional neural 

network (CNN) to get the segmentation of the vertebrae 

from x-ray images, then measures the Cobb angle [2] to 

assess the spine curvature. Unfortunately, spine 

segmentation is a labor-intensive task.  

Image segmentation is a common task in computer 

vision and image processing. In recent years, deep 

learning has become a powerful tool. In [3], Long, et al. 

proposed a fully convolutional network (FCN) for image 

semantic segmentation. An FCN takes an image with 

arbitrary size as input, and through a sequence of 

convolutional layers, it outputs a high-resolution 

segmentation mask with the same size as the input image. 

Feature pyramid network (FPN), proposed by Lin et al. 

[4], was initially developed for object detection; owing to 

its character of multi-scale analysis, FPN could also be 

applied to image segmentation tasks [5-6].  

Compared with natural images, medical images 

usually have lower contrast. For example, the boundary 

between vertebral bodies (VBs) and discs are not always 

clear, which makes it difficult for segmentation task. 

UNet [7] is a fully convolutional neuron network with a 

symmetric encoder-decoder model and skip connections 

between the encoder and decoder blocks. UNet provides 

high-resolution feature maps to the decoder block and 

overcomes the trade-off between localization and the use 

of context information, thereby achieving accurate 

segmentation for medical images.  

In this study, we adopted and modified a network that 

combines UNet and FPN for spine segmentation [8]. This 

type of network has been used for image segmentation of 

natural images, but not yet in spine segmentation. 

Compared with the original UNet, our UNet/FPN hybrid 

has three main enhancements. First, we increase the 

number of channels of the input from one to seven. The 

input includes five spine MRI slices and two coordinate 

maps sharing the same size as the MRI slices. This 

modification not only incorporates more context 
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information to the input, but also adds two coordinate 

maps, which provide additional information of the spine 

orientation to the network. Second, we replace the 

original encoder with the convolutional part of ResNet 

[9]. More specifically, we use an implemented network 

architecture “resnet50_32x4d” in PyTorch. This 

replacement substantially increases the depth of the 

network. Third, an FPN architecture is applied to 

extracting rich multi-scale features and obtaining 

segmentation output. In this manuscript, the implemented 

network is referred as Res50_UNet. 

II. METHODS 

A. Network 

 UNet has a symmetric encoder-decoder architecture, 

including a contracting path and an expansive path. The 

contracting path consists of a sequence of convolution 

layers, each followed by a rectified linear unit (ReLU), 

and a max-pooling operation for downsampling. On the 

expansive path, through a sequence of upsampling of the 

feature map followed by a convolution layer (“up-

convolution”), the scale of the feature map expands as 

the depth of the network increases. In addition, with skip 

connections, the output feature maps on the contracting 

path, which retain more context information, are 

concatenated with corresponding upsampled feature 

maps on the expansive path. 

The Res50_UNet also has an overall “U” structure, 

but the overall architecture has three main modifications 

compared with the original UNet. First, on the 

contracting path, the original encoder blocks are replaced 

with that of ResNet. The downsampling operation of the 

feature maps on the contracting path is achieved by a 

sequence of convolution with stride 2 instead of max-

pooling. Second, the concatenation operation connecting 

the output feature maps of the encoder blocks and the 

upsampled feature maps on the expansive path is 

removed; instead, the convoluted feature maps on the 

contracting path are added to the upsampled feature 

maps on the expansive path. Third, all the output feature 

maps of each decoder block on the expansive path, which 

have different scales, are combined with an FPN 

architecture to form the final output segmentation result. 

Fig. 1 shows the architecture of Res50_UNet. 

For our application, the input of Res50_UNet is a 

concatenation of five consecutive MRI slices and two 

coordinate maps. Five consecutive MRI slices provide 

more context information to the network, while two 

coordinate maps inform the network additional 

information of the orientation of the segmentation 

targets. The pixel value of coordinate map x in the 

vertical direction is constant, while it increases linearly 

from zero to one as the coordinate increases in the 

horizontal direction. For coordinate map y, the pixel 

value of coordinate map y in the horizontal direction is 

constant, while it increases linearly from zero to one as 

the coordinate increase in the vertical direction. Fig. 2 

displays one sample of the input. 

For comparison, we have implemented UNet and 

another two UNet based networks: UNet_BN [1] and 

UNet_Dense [10]. In [1], the authors modified the 

original UNet by adding batch normalize (BN) layer to 

each convolution + ReLU block. UNet_Dense combines 

UNet and dense block [11]. Fig 3, Fig. 4 and Fig. 5 

 
 

Fig. 1. The architecture of Res50_UNet. 

Authorized licensed use limited to: The University of Iowa. Downloaded on September 04,2024 at 17:19:15 UTC from IEEE Xplore.  Restrictions apply. 



illustrate the architectures of our implemented UNet, 

UNet_BN, UNet_Dense, respectively. 

B. Dataset 

We use a spine dataset [12], which consists of T2-

weighted turbo spin-echo MR spine images of 23 

patients, to train the network and test the performance of 

the trained modules. The spine MRIs of each patient 

contains at least 7 VBs of the lower spine (T11 – L5). 

The ground truth segmentation of each spine MRI is a 

binary mask manually segmented. The size of each spine 

MRI and its corresponding segmentation mask is 305 � 

305, and they are resized to 256 � 256 for training the 

network. Fig. 6 shows a spine image, its ground truth 

segmentation mask, and the superimposed image 

(segmentation is pseudocolored in red). 

III. EXPERIMENTS 

To characterize the performance of networks, we used 

the negative of the natural logarithm of the Dice 

similarity coefficient (DSC) [13] between the ground 

truth segmentation mask (GT) and the predicted 

segmentation mask (SR) of the network as the loss 

function. The following two equations represent the 

definition of DSC and loss function, respectively. To 

accommodate for scenarios where the denominator of the 

DSC equation become zero, we added a constant, 

Smooth, to both numerator and denominator in the DSC 

equation. The value of constant Smooth was set as 1. 
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We randomly assigned the dataset into a training set 
and a testing set with the ratio of 4:1 on patient level. 
More specifically, images from 19 patient MRIs were 

assigned into the training set and images from 4 patient 
MRIs were assigned into the testing set. Given 39 MRI 
slices per patient, there are 741 spine MRI slices in the 
training set and 156 spine MRI slices in the testing set. 
We use Adam to optimize the training process and 
ReduceLROnPlateau to reduce the learning rate. Because 
Res50_UNet incorporates some layers of 
“resnet50_32x4d” in PyTorch, so pretrained layers on 
ImageNet are available. In this paper, we provide the 
segmentation results output by both pretrained 
Res50_UNet and non-pretrained Res50_UNet. When 
training Res50_UNet, UNet_BN and UNet_Dense, the 
learning rate is set as 0.005. But setting learning rate as 
0.005 caused loss explosion when training UNet, so the 
learning rate for training UNet is 0.00001. Batchsize is 
set as 16. The training epochs are 10,000 in total. The 
experiment was conducted on Google Colab. Training 
Res50_UNet on the training set takes approximately 6h. 

IV. RESULTS AND DISCUSSIONS 

A. Qualitative Display of the Segmentation Results 

We have implemented the original UNet and three 

other networks based on UNet, including Res50_UNet, 

UNet_BN, and UNet_Dense. The performance of these 

networks on segmenting the spine MRIs were 

investigated and compared. Fig. 7 displays three 

different spine MRIs randomly selected from three 

different patients from the testing set, respectively, with 

ground truth segmentation and output segmentation 

results of four aforementioned networks. After 7000 

epochs of training, the loss has converged. As showed in 

Fig. 7, Res50_UNet achieves impressive segmentation 

performance. For example, in the second row of Fig. 7, 

Res50_UNet can detect the VB, which is not labeled in 

the segmentation ground truth. For UNet, UNet_BN and 

UNet_Dense, the segmentation results are comparable to 

Res50_UNet. 

 
 

Fig. 2. One sample of the input of the network: five consecutive spine MRI slices (slice 1 - 5) and two coordinate maps (slice 

6 - 7) of the same size. Slice 6 is coordinate map y, and slice 7 is coordinate map x. 
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B. Quantitative Evaluation of the Segmentation Results 

To quantitatively characterize the performance of 

four networks, we use six metrics, including accuracy 

(AC), sensitivity (SE), specificity (SP), Dice similarity 

coefficient (DSC), Jaccard similarity (JS) [14], and mean 

square error (MSE). Their definitions are represented by 

the following equations, where TP, TN, FP, FN denote 

the number of true positive, true negative, false positive, 

false negative segmented pixels, respectively, while GT, 

SR represent the ground truth segmentation mask and 

predicted segmentation mask output by the network, 

respectively. We calculate the mean values of the six 

metrics on the testing set as standard to quantitatively 

evaluate the performance of these networks. Given that 

some of these metrics calculated on images containing 

small part of or even no VB are really low, only images 

whose groundtruth segmentation mask containing more 

than 1500 VB pixels will be taken into consideration. 

Therefore, 79 MRI slices on the testing set were chosen 

to calculate these metrics. 
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We trained four networks and saved the module 

every 1000 epochs, then calculated the mean values of 

these metrics of each module on the chosen MRI slices 

on the testing set to see how the performance of networks 

changes as epoch increases. It was found that 

Res50_UNet needs the lowest number of epochs (~1000 

epochs) to achieve steady-state performance (Fig. 8). 

The accuracy (AC) of Res50_Unet is higher than 99.5% 

with only 1000 epochs, which is very impressive. At 

steady state (> 6000 epochs), all four networks have 

comparable performance. These results have shown the 

potential for Res50_UNet in spine MRI segmentation 

when a low number of epochs is desirable. Also, it is 

noted that pretrained Res50_UNet (labeled with pink 

circle) outperforms non-pretrained Res50_UNet (labeled 

with red circle). 

C. Limitations and Future Work 

This study established the initial feasibility of 

applying Res50_UNet to spine segmentation. In this 

study, we investigated VB segmentation on T2 MRI data. 

In the future, we plan to optimize the network structure 

further and investigate the application of Res50_UNet in 

other domains of spine segmentation. 

 
Fig. 3. The architecture of UNet [7]. 

 

 
Fig. 4. The architecture of UNet_BN [1]. 

 

 
Fig. 5. The architecture of UNet_Dense (left side) [10] and 

a dense block (right side) [11]. 

 
Fig. 6. One sample of spine MRI from the dataset and its 

corresponding ground truth segmentation. Column 1: 

original MRI slice; column 2: groundtruth segmentation 

mask; column 3: overlaid groundtruth segmentation. 
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V. CONCLUSIONS 

This study demonstrated the feasibility of applying 

Res50_UNet in spine segmentation. The network 

integrates the characteristics of FPN and UNet. High 

accuracy was achieved with a low number of epochs.  

These results have shown the potential for Res50_UNet 

in spine MRI segmentation, especially when a low 

number of epochs is desirable. 

ACKNOWLEDGMENT 

This project is supported in part by University of 

Iowa Startup Funds and Cottrell Foundation Research 

Grant. 

 
Fig. 7. Segmentation results of three spine MRIs from four networks. Column 1: groundtruth segmentation; column 2: 

segmentation of Res50_UNet based on pretrained module; column 3: segmentation of Res50_UNet trained on T2-weighted 

spine MRIs only; column 4: segmentation of UNet; column 5: segmentation of UNet_BN; column 6: segmentation of 

UNet_Dense. Three rows correspond to three different spine MRIs from three different patients. White arrows in the second 

row indicate the VB not marked on ground truth but segmented by networks. 

 

 
Fig. 8. Metrics evaluating the segmentation performance of four networks. Each small figure corresponds to one metric, and 

we use different colored marks to represent four networks. Pink circle: Res50_UNet based on pretrained module; red circle: 

Res50_UNet trained on T2-weighted spine MRIs only; green upward triangle: UNet_BN; blue downward triangle: 

UNet_Dense, black square: UNet. 
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